Crystal (mathematics)
“ | Un cristal possède deux propriétés charactéristiques: la rigidité, et la faculté de croitre,... | ” |
— Grothendieck (1966a) |
In mathematics, crystals are cartesian sections of certain fibered categories. They were introduced by Alexander Grothendieck (1966a), who named them crystals because in some sense they are "rigid" and "grow". In particular quasicoherent crystals over the crystalline site are analogous to quasicoherent modules over a scheme.
There are several variations of crystals, as follows:
- An isocrystal is a crystal up to isogeny. They are p-adic analogues of Ql-adic étale sheaves, introduced by Grothendieck (1966a) and Berthelot and Ogus (1983) (though the definition of isocrystal only appears in part II of this paper by Ogus (1984)). Convergent isocrystals are a variation of isocrystals that work better over non-perfect fields, and overconvergent isocrystals are another variation related to overconvergent cohomology theories.
- A Dieudonné crystal is a crystal with Verschiebung and Frobenius maps. An F-crystal is a structure in semilinear algebra somewhat related to crystals.
Crystals over the infinitesimal and crystalline sites
The infinitesimal site Inf(X/S) has as objects the infinitesimal extensions of open sets of X. If X is a scheme over S then the sheaf OX/S is defined by OX/S(T) = coordinate ring of T, where we write T as an abbreviation for an object U → T of Inf(X/S). Sheaves on this site grow in the sense that they can be extended from open sets to infinitesimal extensions of open sets.
A crystal on the site Inf(X/S) is a sheaf F of OX/S modules that is rigid in the following sense:
- for any map f between objects T, T′ of Inf(X/S), the natural map from f*F(T) to F(T′) is an isomorphism.
This is similar to the definition of a quasicoherent sheaf of modules in the Zariski topology.
An example of a crystal is the sheaf OX/S.
Crystals on the crystalline site are defined in a similar way.
Crystals in fibered categories
In general, if E is a fibered category over F, then a crystal is a cartesian section of the fibered category. In the special case when F is the category of infinitesimal extensions of a scheme X and E the category of quasicoherent modules over objects of F, then crystals of this fibered category are the same as crystals of the infinitesimal site.
References
- Berthelot, Pierre (1974), Cohomologie cristalline des schémas de caractéristique p>0, Lecture Notes in Mathematics, Vol. 407, 407, Berlin, New York: Springer-Verlag, ISBN 978-3-540-06852-5, MR 0384804, doi:10.1007/BFb0068636
- Berthelot, Pierre; Ogus, Arthur (1978), Notes on crystalline cohomology, Princeton University Press, ISBN 978-0-691-08218-9, MR 0491705
- Chambert-Loir, Antoine (1998), "Cohomologie cristalline: un survol", Expositiones Mathematicae, 16 (4): 333–382, ISSN 0723-0869, MR 1654786
- Grothendieck, Alexander (1966), "On the de Rham cohomology of algebraic varieties", Institut des Hautes Études Scientifiques. Publications Mathématiques, 29 (29): 95–103, ISSN 0073-8301, MR 0199194, doi:10.1007/BF02684807 (letter to Atiyah, Oct. 14 1963)
- Grothendieck, A. (1966a), Letter to J. Tate (PDF).
- Grothendieck, Alexander (1968), "Crystals and the de Rham cohomology of schemes", in Giraud, Jean; Grothendieck, Alexander; Kleiman, Steven L.; et al., Dix Exposés sur la Cohomologie des Schémas (PDF), Advanced studies in pure mathematics, 3, Amsterdam: North-Holland, pp. 306–358, MR 0269663
- Illusie, Luc (1975), "Report on crystalline cohomology", Algebraic geometry, Proc. Sympos. Pure Math., 29, Providence, R.I.: Amer. Math. Soc., pp. 459–478, MR 0393034
- Illusie, Luc (1976), "Cohomologie cristalline (d'après P. Berthelot)", Séminaire Bourbaki (1974/1975: Exposés Nos. 453-470), Exp. No. 456, Lecture Notes in Math., 514, Berlin, New York: Springer-Verlag, pp. 53–60, MR 0444668
- Illusie, Luc (1994), "Crystalline cohomology", Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Providence, RI: Amer. Math. Soc., pp. 43–70, MR 1265522
- Kedlaya, Kiran S. (2009), "p-adic cohomology", in Abramovich, Dan; Bertram, A.; Katzarkov, L.; Pandharipande, Rahul; Thaddeus., M., Algebraic geometry---Seattle 2005. Part 2, Proc. Sympos. Pure Math., 80, Providence, R.I.: Amer. Math. Soc., pp. 667–684, ISBN 978-0-8218-4703-9, MR 2483951, arXiv:math/0601507