Caloric restriction mimetic

Calorie restriction mimetics (CRM), also known as Energy restriction mimetics, designate a hypothetical class of dietary supplement or drug candidate that would in principle mimic the substantial anti-aging effects that calorie restriction (CR) has on many laboratory animals. CR is defined as a reduction in calorie intake of 20% (mild CR) to 50% (severe CR) without incurring malnutrition or a reduction in essential nutrients.[1] An effective CRM would alter the key metabolic pathways involved in the effects of CR itself, leading to preserved youthful health and longer lifespan without the need to reduce food intake. The term was coined by Lane, Ingram, Roth of the National Institute on Aging in a seminal 1998 paper in the Journal of Anti-Aging Medicine, the forerunner of Rejuvenation Research.[2] A number of genes and pathways have been shown to be involved the actions of CR in model organisms and these represent attractive targets for drug discovery and for developing CRM. However, no effective CRM have been identified to date.[1][3][4]

Candidate compounds include:

Because of its parallel effects on these pathways, oxaloacetate was proposed as a CR mimetic.[16] In the short-lived roundworm Caenorhabditis elegans, supplementing the medium with oxaloacetate does increase average life expectancy; it was unclear whether it had an effect on maximum lifespan.[16][19] However, when tested by two independent groups of scientists across four university laboratories, oxaloacetate supplements had no effect on lifespan in healthy laboratory mice.[10][20]

Other candidate CRM are:

References

  1. 1 2 Nikolai, Sibylle; Pallauf, Kathrin; Huebbe, Patricia; Rimbach, Gerald (22 September 2015). "Energy restriction and potential energy restriction mimetics" (PDF). Nutrition Research Reviews. 28: 1–21. PMID 26391585. doi:10.1017/S0954422415000062. Retrieved 8 November 2015.
  2. 1 2 3 Lane MA; Ingram DK; Roth GS (Winter 1998). "2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction". J Anti-Aging Med. 1 (4): 327–37. doi:10.1089/rej.1.1998.1.327. Retrieved 1 October 2013.
  3. de Magalhaes, JP; Wuttke, D; Wood, SH; Plank, M; Vora, C (2012). "Genome-environment interactions that modulate aging: powerful targets for drug discovery". Pharmacol Rev. 64 (1): 88–101. PMC 3250080Freely accessible. PMID 22090473. doi:10.1124/pr.110.004499.
  4. 1 2 3 4 5 Ingram, DK; Roth, GS (Feb–Mar 2011). "Glycolytic inhibition as a strategy for developing calorie restriction mimetics". Experimental Gerontology. 46 (2–3): 148–54. PMID 21167272. doi:10.1016/j.exger.2010.12.001.
  5. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (October 2007). "Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans". Mech. Ageing Dev. 128 (10): 546–52. PMID 17875315. doi:10.1016/j.mad.2007.07.007.
  6. Kaeberlein, Matt; Thomas McDonagh; Birgit Heltweg; Jeffrey Hixon; Eric A. Westman; Seth D. Caldwell; Andrew Napper; Rory Curtis; Peter S. DiStefano; Stanley Fields; Antonio Bedalov; Brian K. Kennedy (April 29, 2005). "Substrate specific activation of sirtuins by resveratrol". Journal of Biological Chemistry. 280 (17): 17038–17045. PMID 15684413. doi:10.1074/jbc.M500655200. Retrieved 7 September 2013.
  7. Zou, S; Carey JR; Liedo P; Ingram DK; Müller HG; Wang JL; Yao F; Yu B; Zhou A (Jun–Jul 2009). "The prolongevity effect of resveratrol depends on dietary composition and calorie intake in a tephritid fruit fly". Experimental Gerontology. 44 (6–7): 472–6. PMC 3044489Freely accessible. PMID 19264118. doi:10.1016/j.exger.2009.02.011.
  8. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (August 2008). "Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span". Cell Metab. 8 (2): 157–68. PMC 2538685Freely accessible. PMID 18599363. doi:10.1016/j.cmet.2008.06.011.
  9. 1 2 Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (February 2011). "Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice". J. Gerontol. A Biol. Sci. Med. Sci. 66 (2): 191–201. PMC 3021372Freely accessible. PMID 20974732. doi:10.1093/gerona/glq178.
  10. 1 2 Strong, Randy; Richard A. Miller; Clinton M. Astle; Joseph A. Baur; Rafael de Cabo; Elizabeth Fernandez; Wen Guo; Martin Javors; James L. Kirkland; James F. Nelson; David A. Sinclair; Bruce Teter; David Williams; Nurulain Zaveri; Nancy L. Nadon; David E. Harrison (January 2013). "Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice". J Gerontol A Biol Sci Med Sci. 68 (1): 6–16. PMC 3598361Freely accessible. PMID 22451473. doi:10.1093/gerona/gls070.
  11. da Luz, PL; Tanaka L; Brum PC; Dourado PM; Favarato D; Krieger JE; Laurindo FR (September 2012). "Red wine and equivalent oral pharmacological doses of Resveratrol delay vascular aging but do not extend life span in rats". Atherosclerosis. 224 (1): 136–42. PMID 22818625. doi:10.1016/j.atherosclerosis.2012.06.007.
  12. Dhahbi, JM; Mote PL; Fahy GM; Spindler SR (Nov 17, 2005). "Identification of potential caloric restriction mimetics by microarray profiling". Physiol Genomics. 23 (3): 343–50. PMID 16189280. doi:10.1152/physiolgenomics.00069.2005.
  13. Arkad'eva, A.V.; Mamonov, A.A.; Popovich, I.G.; Anisimov, V.N.; Mikhel'son, V.M.; Spivak, I.M. (2011). "Metformin slows down ageing processes at the cellular level in SHR mice". Tsitologiia. 53 (2): 166–74. PMID 21516824.
  14. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (Jul 31, 2013). "Metformin improves healthspan and lifespan in mice". Nature Communications. 4: 2192. Bibcode:2013NatCo...4E2192M. PMC 3736576Freely accessible. PMID 23900241. doi:10.1038/ncomms3192.
  15. Smith, DL Jr; Elam CF Jr; Mattison JA; Lane MA; Roth GS; Ingram DK; Allison DB (May 2010). "Metformin supplementation and life span in Fischer-344 rats". J Gerontol A Biol Sci Med Sci. 65 (5): 468–74. PMC 2854888Freely accessible. PMID 20304770. doi:10.1093/gerona/glq033.
  16. 1 2 3 Williams, D.S.; Cash, A.; Hamadani, L.; Diemer, T. (2009). "Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway". Aging Cell. 8 (6): 765–8. PMC 2988682Freely accessible. PMID 19793063. doi:10.1111/j.1474-9726.2009.00527.x.
  17. Haslam, J.M.; Krebs, H.A. (1968). "The permeabiliity of mitochondria to oxaloacetate and malate". Biochem J. 107 (5): 659–67. PMC 1198718Freely accessible. PMID 16742587. doi:10.1042/bj1070659.
  18. Lee, S.m.; Dho, S.H.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. (2012). "Cytosolic malate dehydrogenase regulates senescence in human fibroblasts". Biogerontology. 13 (5): 525–36. PMID 22971926. doi:10.1007/s10522-012-9397-0.
  19. Edwards, Clair B.; Copes, Neil; Brito, Andres G.; Canfield, John; Bradshaw, Patrick C. (2013). "Malate and Fumarate Extend Lifespan in Caenorhabditis elegans". PLOS ONE. 8 (3): e58345. Bibcode:2013PLoSO...858345E. PMC 3589421Freely accessible. PMID 23472183. doi:10.1371/journal.pone.0058345.
  20. Spindler, S. "Diet, Drugs, Supplements and Lifespan". 2012 Health Conference Series. HealthActivator. Retrieved 9 April 2015.
  21. Lee CK, Pugh TD, Klopp RG, Edwards J, Allison DB, Weindruch R, Prolla TA (Apr 15, 2004). "The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice". Free Radic Biol Med. 36 (8): 1043–57. PMID 15059645. doi:10.1016/j.freeradbiomed.2004.01.015.
  22. Merry BJ, Kirk AJ, Goyns MH (June 2008). "Dietary lipoic acid supplementation can mimic or block the effect of dietary restriction on life span". Mech Ageing Dev. 129 (6): 341–8. PMID 18486188. doi:10.1016/j.mad.2008.04.004.
  23. Spindler SR; Mote PL (2007). "Screening candidate longevity therapeutics using gene-expression arrays". Gerontology. 53 (5): 306–21. PMID 17570924. doi:10.1159/000103924.
  24. Spindler SR; Mote PL; Flegal JM (Dec 2013). "Lifespan effects of simple and complex nutraceutical combinations fed isocalorically to mice". Age (Dordr). 36 (2): 705–718. PMC 4039264Freely accessible. PMID 24370781. doi:10.1007/s11357-013-9609-9.
  25. 1 2 3 4 Minor RK, Smith DL, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, Ingram DK, Mattison JA (Mar 15, 2010). "Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats". Toxicol Appl Pharmacol. 243 (3): 332–9. PMC 2830378Freely accessible. PMID 20026095. doi:10.1016/j.taap.2009.11.025.
  26. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007). "Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress". Cell Metab. 6 (4): 280–93. PMID 17908557. doi:10.1016/j.cmet.2007.08.011.
  27. 1 2 3 Stanfel MN; Shamieh LS; Kaeberlein M; Kennedy BK (Oct 2009). "The TOR pathway comes of age". Biochim Biophys Acta. 1790 (10): 1067–74. PMC 3981532Freely accessible. PMID 19539012. doi:10.1016/j.bbagen.2009.06.007. Retrieved 8 July 2014.
  28. Harrison DE, Strong R, Sharp ZD, et al. (8 July 2009). "Rapamycin fed late in life extends lifespan in genetically heterogeneous mice". Nature. 460 (7253): 392–5. Bibcode:2009Natur.460..392H. PMC 2786175Freely accessible. PMID 19587680. doi:10.1038/nature08221. Lay summary The Times (2009-07-08).
  29. Miller RA; Harrison DE; Astle CM; Fernandez E; Flurkey K; Han M; Javors MA; Li X; Nadon NL; Nelson JF; Pletcher S; Salmon AB; Sharp ZD; Van Roekel S; Winkleman L; Strong R (Jun 2014). "Rapamycin-Mediated Lifespan Increase in Mice is Dose and Sex-Dependent and Appears Metabolically Distinct from Dietary Restriction". Aging Cell. 13 (3): 468–77. PMC 4032600Freely accessible. PMID 24341993. doi:10.1111/acel.12194. Retrieved 8 July 2014.
  30. 1 2 Yu Z; Wang R; Fok WC; Coles A; Salmon AB; Pérez VI (April 2014). "Rapamycin and Dietary Restriction Induce Metabolically Distinctive Changes in Mouse Liver". J Gerontol A Biol Sci Med Sci. 70 (4): 410–20. PMC 4447794Freely accessible. PMID 24755936. doi:10.1093/gerona/glu053.
  31. 1 2 Fok WC; Bokov A; Gelfond J; Yu Z; Zhang Y; Doderer M; Chen Y; Javors M; Wood WH 3rd; Zhang Y; Becker KG; Richardson A; Pérez VI (Apr 2014). "Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver". Aging Cell. 13 (2): 311–9. PMC 3989927Freely accessible. PMID 24304444. doi:10.1111/acel.12175.
  32. Eisenberg, Tobias; Abdellatif, Mahmoud; Schroeder, Sabrina; Primessnig, Uwe; Stekovic, Slaven; Pendl, Tobias; Harger, Alexandra; Schipke, Julia; Zimmermann, Andreas. "Cardioprotection and lifespan extension by the natural polyamine spermidine". Nature Medicine. 22: 1428–1438. PMID 27841876. doi:10.1038/nm.4222.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.