Community matrix
In mathematical biology, the community matrix is the linearization of the Lotka–Volterra equation at an equilibrium point. The eigenvalues of the community matrix determine the stability of the equilibrium point.
The Lotka–Volterra predator–prey model is
where x(t) denotes the number of prey, y(t) the number of predators, and α, β, γ and δ are constants. The linearization of these differential equations at an equilibrium point (x*, y*) has the form
where u = x − x* and v = y − y*. The matrix A is called the community matrix. If A has an eigenvalue with positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable.
References
- Murray, James D. (2002), Mathematical Biology I. An Introduction, Interdisciplinary Applied Mathematics, 17 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95223-9.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.