Isotopes of cobalt
| ||||||||||||||||||||||||||||||||||||||
Standard atomic weight (Ar) |
| |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring cobalt (27Co) is composed of 1 stable isotope, 59Co. 28 radioisotopes have been characterized with the most stable being 60Co with a half-life of 5.2714 years, 57Co with a half-life of 271.8 days, 56Co with a half-life of 77.27 days, and 58Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are less than 18 hours and the majority of these have half-lives that are less than 1 second. This element also has 11 meta states, all of which have half-lives less than 15 minutes.
The isotopes of cobalt range in atomic weight from 47Co to 75Co. The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59Co are iron isotopes and the primary products after are nickel isotopes.
Radioactive isotopes can be produced by various nuclear reactions. For example, the isotope 57Co is produced by cyclotron irradiation of iron. The principal reaction involved is the (d,n) reaction 56Fe + 2H → n + 57Co.[2]
Use of cobalt radioisotopes in medicine
Cobalt-60 (Co-60 or 60Co) is a radioactive metal that is used in radiotherapy. It produces two gamma rays with energies of 1.17 MeV and 1.33 MeV. The 60Co source is about 2 cm in diameter and as a result produces a geometric penumbra, making the edge of the radiation field fuzzy. The metal has the unfortunate habit of producing a fine dust, causing problems with radiation protection. The 60Co source is useful for about 5 years but even after this point is still very radioactive, and so cobalt machines have fallen from favor in the Western world where linacs are common.
Cobalt-57 (Co-57 or 57Co) is a radioactive metal that is used in medical tests; it is used as a radiolabel for vitamin B12 uptake. It is useful for the Schilling test.[3]
Industrial uses for radioactive isotopes
Cobalt-60 (Co-60 or 60Co) is useful as a gamma ray source because it can be produced in predictable quantities, and for its high radioactive activity simply by exposing natural cobalt to neutrons in a reactor for a given time. The uses for industrial cobalt include:
- Sterilization of medical supplies and medical waste
- Radiation treatment of foods for sterilization (cold pasteurization)
- Industrial radiography (e.g., weld integrity radiographs)
- Density measurements (e.g., concrete density measurements)
- Tank fill height switches.
Cobalt-57 is used as a source in Mössbauer spectroscopy of iron-containing samples. The electron capture decay of the 57Co forms an excited state of the 57Fe nucleus, which in turn decays to the ground state with emission of a gamma ray. Measurement of the gamma ray spectrum provides information about the chemical state of the iron atom in the sample.
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[4][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
47Co | 27 | 20 | 47.01149(54)# | 7/2−# | |||||
48Co | 27 | 21 | 48.00176(43)# | p | 47Fe | 6+# | |||
49Co | 27 | 22 | 48.98972(28)# | <35 ns | p (>99.9%) | 48Fe | 7/2−# | ||
β+ (<.1%) | 49Fe | ||||||||
50Co | 27 | 23 | 49.98154(18)# | 44(4) ms | β+, p (54%) | 49Mn | (6+) | ||
β+ (46%) | 50Fe | ||||||||
51Co | 27 | 24 | 50.97072(16)# | 60# ms [>200 ns] | β+ | 51Fe | 7/2−# | ||
52Co | 27 | 25 | 51.96359(7)# | 115(23) ms | β+ | 52Fe | (6+) | ||
52mCo | 380(100)# keV | 104(11)# ms | β+ | 52Fe | 2+# | ||||
IT | 52Co | ||||||||
53Co | 27 | 26 | 52.954219(19) | 242(8) ms | β+ | 53Fe | 7/2−# | ||
53mCo | 3197(29) keV | 247(12) ms | β+ (98.5%) | 53Fe | (19/2−) | ||||
p (1.5%) | 52Fe | ||||||||
54Co | 27 | 27 | 53.9484596(8) | 193.28(7) ms | β+ | 54Fe | 0+ | ||
54mCo | 197.4(5) keV | 1.48(2) min | β+ | 54Fe | (7)+ | ||||
55Co | 27 | 28 | 54.9419990(8) | 17.53(3) h | β+ | 55Fe | 7/2− | ||
56Co | 27 | 29 | 55.9398393(23) | 77.233(27) d | β+ | 56Fe | 4+ | ||
57Co | 27 | 30 | 56.9362914(8) | 271.74(6) d | EC | 57Fe | 7/2− | ||
58Co | 27 | 31 | 57.9357528(13) | 70.86(6) d | β+ | 58Fe | 2+ | ||
58m1Co | 24.95(6) keV | 9.04(11) h | IT | 58Co | 5+ | ||||
58m2Co | 53.15(7) keV | 10.4(3) µs | 4+ | ||||||
59Co | 27 | 32 | 58.9331950(7) | Stable | 7/2− | 1.0000 | |||
60Co | 27 | 33 | 59.9338171(7) | 5.2713(8) y | β−, γ | 60Ni | 5+ | ||
60mCo | 58.59(1) keV | 10.467(6) min | IT (99.76%) | 60Co | 2+ | ||||
β− (.24%) | 60Ni | ||||||||
61Co | 27 | 34 | 60.9324758(10) | 1.650(5) h | β− | 61Ni | 7/2− | ||
62Co | 27 | 35 | 61.934051(21) | 1.50(4) min | β− | 62Ni | 2+ | ||
62mCo | 22(5) keV | 13.91(5) min | β− (99%) | 62Ni | 5+ | ||||
IT (1%) | 62Co | ||||||||
63Co | 27 | 36 | 62.933612(21) | 26.9(4) s | β− | 63Ni | 7/2− | ||
64Co | 27 | 37 | 63.935810(21) | 0.30(3) s | β− | 64Ni | 1+ | ||
65Co | 27 | 38 | 64.936478(14) | 1.20(6) s | β− | 65Ni | (7/2)− | ||
66Co | 27 | 39 | 65.93976(27) | 0.18(1) s | β− | 66Ni | (3+) | ||
66m1Co | 175(3) keV | 1.21(1) µs | (5+) | ||||||
66m2Co | 642(5) keV | >100 µs | (8-) | ||||||
67Co | 27 | 40 | 66.94089(34) | 0.425(20) s | β− | 67Ni | (7/2−)# | ||
68Co | 27 | 41 | 67.94487(34) | 0.199(21) s | β− | 68Ni | (7-) | ||
68mCo | 150(150)# keV | 1.6(3) s | (3+) | ||||||
69Co | 27 | 42 | 68.94632(36) | 227(13) ms | β− (>99.9%) | 69Ni | 7/2−# | ||
β−, n (<.1%) | 68Ni | ||||||||
70Co | 27 | 43 | 69.9510(9) | 119(6) ms | β− (>99.9%) | 70Ni | (6-) | ||
β−, n (<.1%) | 69Ni | ||||||||
70mCo | 200(200)# keV | 500(180) ms | (3+) | ||||||
71Co | 27 | 44 | 70.9529(9) | 97(2) ms | β− (>99.9%) | 71Ni | 7/2−# | ||
β−, n (<.1%) | 70Ni | ||||||||
72Co | 27 | 45 | 71.95781(64)# | 62(3) ms | β− (>99.9%) | 72Ni | (6-,7-) | ||
β−, n (<.1%) | 71Ni | ||||||||
73Co | 27 | 46 | 72.96024(75)# | 41(4) ms | 7/2−# | ||||
74Co | 27 | 47 | 73.96538(86)# | 50# ms [>300 ns] | 0+ | ||||
75Co | 27 | 48 | 74.96833(86)# | 40# ms [>300 ns] | 7/2−# |
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
- Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO)
- Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW)
In popular culture
In the two part episode Doomsday is Tomorrow of the television series The Bionic Woman, Dr. Elijah Cooper's doomsday device is a thermonuclear bomb encased in a fictional isotope of Cobalt, Uthenium J for which Dr. Cooper claims has a half life of 500 years.
In the film Ghostbusters (1984 film), Dr Egon Spengler, played by Harold Ramis, asks a sarcastic question regarding Cobalt's atomic weight being 58.9.
References
- ↑ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure Appl. Chem. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- ↑ L. E. Diaz. "Cobalt-57: Production". JPNM Physics Isotopes. University of Harvard. Retrieved 2013-11-15.
- ↑ L. E. Diaz. "Cobalt-57: Uses". JPNM Physics Isotopes. University of Harvard. Retrieved 2010-09-13.
- ↑ "Universal Nuclide Chart". nucleonica. (Registration required (help)).
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved 23 February 2017.
- David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition, online version. CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.
Isotopes of iron | Isotopes of cobalt | Isotopes of nickel |
Table of nuclides |