Chlordane
Names | |
---|---|
Systematic IUPAC name
1,2,4,5,6,7,8,8-Octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindane | |
Other names
Chlordan; Chlordano; Ortho; Octachloro-4,7-methanohydroindane | |
Identifiers | |
ECHA InfoCard | 100.000.317 |
KEGG | |
PubChem CID |
|
UNII | |
Properties | |
C10H6Cl8 | |
Molar mass | 409.76 g·mol−1 |
Appearance | Colorless, viscous liquid |
Odor | Slightly pungent, chlorine-like |
Density | 1.60 g/cm3 |
Melting point | 102–106 °C (216–223 °F; 375–379 K) [1] |
Boiling point | decomposes[1] |
0.0001% (20°C)[1] | |
Refractive index (nD) |
1.565 |
Hazards | |
Main hazards | potential occupational carcinogen |
Flash point | 107 °C (225 °F; 380 K) (open cup) |
Explosive limits | 0.7–5% |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) |
590 mg/kg (rat, oral) 100 mg/kg (rabbit, oral) 430 mg/kg (mouse, oral) 300 mg/kg (rabbit, oral) 145 mg/kg (mouse, oral) 1720 mg/kg (hamster, oral) 200 mg/kg (rat, oral)[2] |
US health exposure limits (NIOSH): | |
PEL (Permissible) |
TWA 0.5 mg/m3 [skin][1] |
REL (Recommended) |
Ca TWA 0.5 mg/m3 [skin][1] |
IDLH (Immediate danger) |
100 mg/m3[1] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
The name Chlordane, or chlordan, is commonly used as both a specific chemical (with trans-and cis- isomers) and as a mixture of compounds (main components- heptachlor, chlordane, and nonachlor). This mixture, more specifically called technical chlordane, was first produced in the 1940s by Julius Hyman. Technical chlordane development was by chance, during a search for possible uses of a by-product of synthetic rubber manufacturing. By chlorinating this by-product, persistent and potent insecticides were easily and cheaply produced. The chlorine atoms, 7 in the case of heptachlor and 8 in chlordane, and 9 in the case of nonachlor, surround and stabilize the cyclodiene ring and thus these compounds are referred to as cyclodienes. Other members of the cyclodiene family of organochorine insecticides are aldrin and its epoxide, dieldrin, as well as endrin, which is a stereoisomer of dieldrin. These highly chlorinated cyclodienes are both resistant to degradation in the environment and in humans/animals and readily accumulate in lipids (fats) of human/animals.[3] The Center for Disease Control (CDC) has compiled a list of symptoms for both acutely and chronically exposed persons Symptoms and Treatment
In the United States, chlordane was used until 1988 as an insecticide for treating approximately 30 million homes for termites,[4] for food crops like corn and citrus, and on lawns and domestic gardens.[5]
Production, composition and uses
Chlordane is one so-called cyclodiene pesticide, meaning that it is derived from hexachlorocyclopentadiene.
Hexachlorocyclopentadiene forms a Diels-Alder adduct with cyclopentadiene, and chlorination of this adduct gives predominantly two chlordane isomers, α and β, in addition to other products such as trans-nonachlor and heptachlor.[6] The β-isomer is popularly known as gamma and is more bioactive.[5] The mixture that is composed of 147 components is called technical chlordane.[7][8]
- cis-chlordane (also known as α-chlordane (CAS=5103-71-9))
- trans-chlordane (also known as γ-chlordane and beta-chlordane (CAS=5103-74-2))
- trans-nonachlor
- (+)-heptachlor
Chlordane appears as a white or off-white crystals when synthesized, but it was more commonly sold in various formulations as oil solutions, emulsions, sprays, dusts, and powders. These products were sold in the United States from 1948 to 1988.
Because of concern about damage to the environment and harm to human health, the United States Environmental Protection Agency (EPA) banned all uses of chlordane in 1983, except termite control. The EPA banned all uses of chlordane in 1988.[9] The EPA recommends that children should not drink water with more than 60 parts of chlordane per billion parts of drinking water (60 ppb) for longer than 1 day. EPA has set a limit in drinking water of 2 ppb.
Chlordane is very persistent in the environment because it does not break down easily. Tests of the air in the residence of U.S. government housing, 32 years after chlordane treatment, showed levels of chlordane and heptachlor 10-15 times the Minimal Risk Levels (20 nanograms/cubic meter of air) published by the Centers for Disease Control. It has an environmental half-life of 10 to 20 years.[10]
Origin, pathways of exposure, and processes of excretion
In the years 1948–1988 chlordane was a common pesticide for corn and citrus crops, as well as a method of home termite control.[3] Pathways of exposure to chlordane include ingestion of crops grown in chlordane-contaminated soil, inhalation of air in chlordane-treated homes and from landfills, and ingestion of high-fat foods such as meat, fish, and dairy, as chlordane builds up in fatty tissue.[11] The United States Environmental Protection Agency reported that over 30 million homes were treated with technical chlordane or technical chlordane with heptachlor. Depending on the site of home treatment, the indoor air levels of chlordane can still exceed the Minimal Risks Levels (MRLs) for both cancer and chronic disease by orders of magnitude.[12] Chlordane is excreted slowly through feces, urine elimination, and through breast milk in nursing mothers. It is able to cross the placenta and become absorbed by developing fetuses in pregnant women.[13] A breakdown product of chlordane, the metabolite oxychlordane, accumulates in blood and adipose tissue with age.[14]
Environmental impact
Being hydrophobic, chlordane adheres to soil particles and enters groundwater only slowly, owing to its low solubility (0.009 ppm). It requires many years to degrade.[15] Chlordane bioaccumulates in animals.[16] It is highly toxic to fish, with an LD50 of 0.022–0.095 mg/kg (oral).
Oxychlordane (C10H4Cl8O),the primary metabolite of chlordane, and heptachlor epoxide, the primary metabolite of heptachlor, along with the two other main components of the chlordane mixture, cis-nonachlor and trans-nonachlor, are the main bioaccumulating constituents.[7] trans-Nonachlor is more toxic than technical chlordane and cis-nonachlor is less toxic.[7]
Chlordane is a known persistent organic pollutants (POP), classified among the "dirty dozen" and banned by the 2001 Stockholm Convention on Persistent Organic Pollutants.[17]
Health effects
Measurements of metabolites of chlordane/heptachlor in the blood of thousands of U. S. citizens during the U.S. National Health and Nutrition Examination Survey (NHANES)(1999-2006) reported that higher concentrations of heptachlor epoxide and oxychlordane increase the risk of cognitive decline,[18] prostate cancer (trans-nonachlor),[19] type 2 diabetes,[20][21] and obesity (enlarged waist circumference),[22]
In other epidemiological surveys, higher levels of oxychlordane in blood and/or adipose increased the risk of non-Hodgkin lymphoma,[23][24] and the risk of testicular cancer.[25] Heptachlor epoxide levels in breast tissue increased with increasing rates of breast cancer.[26]
Exposure to chlordane/heptachlor and/or its metabolites (oxychlordane, heptachlor epoxide) are risk factors for type-2 diabetes (reviewed 17 published studies),[27] for lymphoma (13 studies),[28] for prostate cancer (8 studies),[29] for obesity (5 studies),[30] for testicular cancer (4 studies),[31] for breast cancer (2 studies),[32]
Heptachlor and chlordane are some of the most potent carcinogens tested in animal models. No human epidemiological study has been conducted to determine the relationship between levels of chlordane/heptachlor in indoor air and rates of cancer in inhabitants. However, a study conducted by the National Cancer Institute reported that higher levels of chlordane in dust on the floors of homes were associated with higher rates of non-Hodgkin lymphoma in occupants.[33][34] Breathing chlordane in indoor air is the main route of exposure for these levels in human tissues. Currently, USEPA has defined a concentration of 24 nanogram per cubic meter of air (ng/M3) for chlordane compounds over a 20-year exposure period as the concentration that will increase the probability of cancer by 1 in 1,000,000 persons. This probability of developing cancer increases to 10 in 1,000,000 persons with an exposure of 100 ng/M3 and 100 in 1,000,000 with an exposure of 1000 ng/M3.[35]
The non-cancer health effects of chlordane compounds, which include diabetes, insulin resistance, migraines, respiratory infections, immune-system activation, anxiety, depression, blurry vision, confusion, intractable seizures as well as permanent neurological damage,[36] probably affects more people than cancer. Trans-nonachlor and oxychlordane in serum of mothers during gestation has been linked with behaviors associated with autism in offspring at age 4-5.[37] The Agency for Toxic Substances and Disease Registry (ATSDR) has defined a concentration of chlordane compounds of 20 ng/M3 as the Minimal Risk Level (MRLs). ATSDR defines Minimal Risk Level as an estimate of daily human exposure to a dose of a chemical that is likely to be without an appreciable risk of adverse non-cancerous effects over a specific duration of exposure.[38] Eight large epidemiological studies in the United States, using CDC's NHANES data, have consistently shown of all the chemicals found in the blood of Americans, heptachlor epoxides and oxychlordane have the highest associated risk with insulin resistance and diabetes.[39][40][41]
Remediation
Chlordane was applied under the home/building during treatment for termites and the half-life can be up to 30 years. Chlordane has a low vapor pressure and volatilizes slowly into the air of home/building above. To remove chlordane from indoor air requires either ventilation (Heat Exchange Ventilation) or activated carbon filtration. Chemical remediation of chlordane in soils was attempted by the US Army Corps of Engineers by mixing chlordane with aqueous lime and persulfate. In a phytoremediation study, Kentucky bluegrass and Perennial ryegrass were found to be minimally affected by chlordane, and both were found to take it up into their roots and shoots.[42] Mycoremediation of chlordane in soil have found that contamination levels were reduced.[42] The fungus Phanerochaete chrysosporium has been found to reduce concentrations by 21% in water in 30 days and in solids in 60 days.[43]
References
- 1 2 3 4 5 6 "NIOSH Pocket Guide to Chemical Hazards #0112". National Institute for Occupational Safety and Health (NIOSH).
- ↑ "Chlordane". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
- 1 2 Agency for Toxic Substances & Disease Registry (ATSDR). Toxic Substances Portal: Chlordane. Last updated September, 2010 [online]. Available at URL: http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=62
- ↑ Toxicological Profile for Chlordane, U.S. Department Of Health and Human Services, Agency for Toxic Substances and Disease Registry
- 1 2 Robert L. Metcalf "Insect Control" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a14_263
- ↑ Dearth Mark A.; Hites Ronald A. (1991). "Complete analysis of technical chlordane using negative ionization mass spectrometry.". Environ. Sci. Technol. 25 (2): 245–254. doi:10.1021/es00014a005.
- 1 2 3 Bondy, G. S.; Newsome, WH; Armstrong, CL; Suzuki, CA; Doucet, J; Fernie, S; Hierlihy, SL; Feeley, MM; Barker, MG (2000). "Trans-Nonachlor and cis-Nonachlor Toxicity in Sprague-Dawley Rats: Comparison with Technical Chlordane". Toxicological Sciences. 58 (2): 386–98. PMID 11099650. doi:10.1093/toxsci/58.2.386.
- ↑ Liu W.; Ye J.; Jin M. (2009). "Enantioselective phytoeffects of chiral pesticides.". J Agric Food Chem. 57 (6): 2087–2095. PMID 19292458. doi:10.1021/jf900079y.
- ↑ Pesticides and Breast Cancer Risk: Chlordane Archived 2012-06-14 at the Wayback Machine., Fact Sheet #11, March 1998, Program on Breast Cancer and Environmental Risk Factors Cornell University
- ↑ Bennett, G. W.; Ballee, D. L.; Hall, R. C.; Fahey, J. F.; Butts, W. L. & Osmun, J. V. (1974). "Persistence and distribution of chlordane and dieldrin applied as termiticides". Bull. Environ. Contam. Toxicol. 11 (1): 64–9. PMID 4433785. doi:10.1007/BF01685030.
- ↑ Agency for Toxic Substances & Disease Registry (ATSDR). ToxFaqs: September, 1995. Available at URL: http://www.atsdr.cdc.gov/toxfaqs/tfacts31.pdf
- ↑ Whitmore R. W.; et al. (1994). "Non-occupational exposures to pesticides for residents of two U.S. cities". Archives of Environmental Contamination and Toxicology. 26: 47–59. doi:10.1007/bf00212793.
- ↑ Center for Disease Control and Prevention (CDC). National Report on Human Exposure to Environmental Chemicals: Chemical Information: Chlordane. Last updated November, 2010 [online].
- ↑ Lee D.; et al. (2007). "Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: Results from the National Health and Nutrition Examination Survey". Diabetic Care. 30: 622–628. doi:10.2337/dc06-2190.
- ↑ http://organic.com.au/pesticides/Chlorodane/
- ↑ Kavita Singh, Wim J.M. Hegeman, Remi W.P.M. Laane, Hing Man Chan (2016). "Review and evaluation of a chiral enrichment model for chlordane enantiomers in the environment". Environmental Reviews. 24 (4): 363–376. doi:10.1139/er-2016-0015.
- ↑ The 12 initial POPs under the Stockholm Convention
- ↑ Kim, Se-A; et al. (2015). "Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides,". PLOS ONE. 10: 1–9. PMC 4480979 . PMID 26107947. doi:10.1371/journal.pone.0130623.
- ↑ KXu, X; et al. (2010). "Association of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. Adults". Environmental Health Perspectives. 118: 60–66. PMC 2831969 . PMID 20056587. doi:10.1289/ehp.0900919.
- ↑ Patel, CJ; et al. (2010). "An Environmental-wide association study (EWAS) on type 2 diabetes mellitus". PLOS ONE. 5: 1–10. PMC 2873978 . PMID 20505766. doi:10.1371/journal.pone.0010746.
- ↑ Lee, D; et al. (2010). "Low dose of some organic pollutants predicts type 2 diabetes: A nested case-control study". Environmental Health Perspectives. 118: 1235–1242. PMC 2944083 . PMID 20444671. doi:10.1289/ehp.0901480.
- ↑ Elobeid, MA; et al. (2010). "Endocrine disruptors and obesity: An examination of selected persistent organic pollutants in the NHANES 1999-20002 data". Int. J. Environ Res. Public Health. 7: 2988–3005. doi:10.3390/ijerph7072988.
- ↑ Spinell, JJ; et al. (2007). "Organochlorines and risk of non-Hodgkin lymphoma". Int. J. Cancer. 121: 2767–2775. PMID 17722095. doi:10.1002/ijc.23005.
- ↑ Quintana, PJE; et al. (2004). "Adipose tissue levels of organochlorine pesticides and polychlorinated biphenyls and risk of non-Hodgkin's lymphoma" Check
|url=
value (help). Environmental Health Perspectives. 112: 854–861. doi:10.1289/ehp.6726. - ↑ McGlynn, Katherine A.; Quraishi, Sabah M.; Graubard, BI; Weber, JP; Rubertone, MV; Erickson, RL (April 29, 2008). "Persistent Organochlorine Pesticides and Risk of Testicular Germ Cell Tumors". Journal of the National Cancer Institute. 100 (9): 663–71. PMID 18445826. doi:10.1093/jnci/djn101..
- ↑ Cassidy Richard A.; et al. (2005). "The Link Between the Insecticide Heptachlor Epoxide, Estradiol, and Breast Cancer". Breast Cancer Research and Treatment. 90: 55–64. doi:10.1007/s10549-004-2755-0.
- ↑ Evangelou, E; et al. (2016). "Exposure to pesticides and diabetes: A systematic review and meta-analysis". Environment International. 91: 60–68. doi:10.1016/j.envint.2016.02.013.
- ↑ Luo, Dan.; et al. (2005). "Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies". Scientific Reports. 6: 25768. doi:10.1038/srep25768.
- ↑ Lim, J.E.; et al. (2015). "Body concentrations of persistent organic pollutants and prostate cancer". Environmental Science Pullution Research International. 22 (15): 11275–84. doi:10.1007/s11356-015-4315-z.
- ↑ Tang-Peronard, J. L.;; et al. (2011). "Endocrine-disrupting chemicals and obesity development in humans: a review". Obesity Reviews. 12 (8): 622–36. doi:10.1111/j.1467-789x.2011.00871.x.
- ↑ Cook, Michael B; et al. (2011). "Organochlorine compounds and testicular dygensis syndrome:human data". International journal of andrology. 34 (4): e68–e85. doi:10.1111/j1365-2605.2011.01171.x.
- ↑ Khanjani, Narges; et al. (2007). "Systematic review and meta-analysis of cylodiene insecticides and breast cancer". Journal of environmental science and health Part C. 25: 23–52. doi:10.1080/10590500701201711.
- ↑ Colt Joanna S.; et al. (2006). "Residential Insecticde Use and Risk of non-Hodgkin's lymphoma". Cancer Epidemiology Biomarkers and Prevalence. 15 (2): 251–257. doi:10.1158/1055-9965-EPI-05-0556.
- ↑ Cassidy Richard A (2010). "Cancer and chlordane-treated homes: a pinch of prevention is worth a pound of cure". Leukemia & Lymphoma. 51: 1368–1369. doi:10.3109/10428194.2010.483304.
- ↑ Chlordane (Technical) (CASRN 12789-03-6) | IRIS | US EPA
- ↑ ATSDR - Medical Management Guidelines (MMGs): Chlordane
- ↑ J. M. Braun (2014). "Gestational Exposure to Endocrine-Disrupting Chemicals and Reciprocal Social, Repetitive, and Stereotypic Behaviors in 4-and 5-Year-Old Children:The HOME Study". Environmental Health Perspectives. 122: 513–520. doi:10.1289/ehp130761.
- ↑ ATSDR - Redirect - Toxicological Profile: Chlordane
- ↑ Lee D.; et al. (2006). "A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes". Diabetes Care. 29: 1638–1644. PMID 16801591. doi:10.2337/dc06-0543.
- ↑ C. J. Patel, et al. (2010). An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. Plos One 5(5);e10746
- ↑ Everett C. J.; et al. (2010). "Biomarkers of pesticide exposure and diabetes in the 1999-2004 National Health and Nutrition Examination Survey". Environment International. 36: 398–401. doi:10.1016/j.envint.2010.02.010.
- 1 2 Medina, Victor F.; Scott A. Waisner; Agnes B. Morrow; Afrachanna D. Butler; David R. Johnson; Allyson Harrison; Catherine C. Nestler. "Legacy Chlordane in Soils from Housing Areas Treated with Organochlorine Pesticides" (PDF). US Army Corps of Engineers. Retrieved 10 October 2012.
- ↑ Kennedy, D.W.; S. D. Aust; J. A. Bumpus (1990). "Comparative biodegradation of alkyl halide insecticides by the White Rot fungus, Phanerochaete chrysosporium". Appl. Environ. Microbiol. 56:2347–2353.
External links
- Chlordane Technical Fact Sheet - National Pesticide Information Center
- Chlordane General Fact Sheet - National Pesticide Information Center
- Chlordane Pesticide Information Profile - Extension Toxicology Network
- ATSDR - ToxFAQs: Chlordane
- CDC - NIOSH Pocket Guide to Chemical Hazards - Chlordane