Chain sequence

In the analytic theory of continued fractions, a chain sequence is an infinite sequence {an} of non-negative real numbers chained together with another sequence {gn} of non-negative real numbers by the equations

where either (a) 0  gn < 1, or (b) 0 < gn  1. Chain sequences arise in the study of the convergence problem both in connection with the parabola theorem, and also as part of the theory of positive definite continued fractions.

The infinite continued fraction of Worpitzky's theorem contains a chain sequence. A closely related theorem[1] shows that

converges uniformly on the closed unit disk |z|  1 if the coefficients {an} are a chain sequence.

An example

The sequence {¼, ¼, ¼, ...} appears as a limiting case in the statement of Worpitzky's theorem. Since this sequence is generated by setting g0 = g1 = g2 = ...  = ½, it is clearly a chain sequence. This sequence has two important properties.

generates the same unending sequence {¼, ¼, ¼, ...}.

Notes

  1. Wall traces this result back to Oskar Perron (Wall, 1948, p. 48).

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.