Cyclin-dependent kinase 9

CDK9
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCDK9, C-2k, CDC2L4, CTK1, PITALRE, TAK, cyclin-dependent kinase 9, cyclin dependent kinase 9
External IDsOMIM: 603251 MGI: 1328368 HomoloGene: 55566 GeneCards: CDK9
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

1025

107951

Ensembl

ENSG00000136807

ENSMUSG00000009555

UniProt

P50750

Q99J95

RefSeq (mRNA)

NM_001261

NM_130860

RefSeq (protein)

NP_001252
NP_001252.1

NP_570930

Location (UCSC)Chr 9: 127.79 – 127.79 MbChr 2: 32.71 – 32.71 Mb
PubMed search[1][2]
Wikidata
View/Edit HumanView/Edit Mouse

Cyclin-dependent kinase 9 or CDK9 is a cyclin-dependent kinase associated with P-TEFb.

Function

The protein encoded by this gene is a member of the cyclin-dependent kinase (CDK) family. CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS.[3]

CDK9 is also known to associate with other proteins such as TRAF2, and be involved in differentiation of skeletal muscle.[4]

Interactions

CDK9 has been shown to interact with:

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. "Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)".
  4. MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, Giordano A (1998). "Binding of CDK9 to TRAF2". J. Cell. Biochem. 71 (4): 467–78. PMID 9827693. doi:10.1002/(SICI)1097-4644(19981215)71:4<467::AID-JCB2>3.0.CO;2-G.
  5. Lee DK, Duan HO, Chang C (March 2001). "Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation". J. Biol. Chem. 276 (13): 9978–84. PMID 11266437. doi:10.1074/jbc.M002285200.
  6. 1 2 3 Kiernan RE, Emiliani S, Nakayama K, Castro A, Labbé JC, Lorca T, Nakayama Ki K, Benkirane M (December 2001). "Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome". Mol. Cell. Biol. 21 (23): 7956–70. PMC 99964Freely accessible. PMID 11689688. doi:10.1128/MCB.21.23.7956-7970.2001.
  7. 1 2 Fu TJ, Peng J, Lee G, Price DH, Flores O (December 1999). "Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription". J. Biol. Chem. 274 (49): 34527–30. PMID 10574912. doi:10.1074/jbc.274.49.34527.
  8. 1 2 Peng J, Zhu Y, Milton JT, Price DH (March 1998). "Identification of multiple cyclin subunits of human P-TEFb". Genes Dev. 12 (5): 755–62. PMC 316581Freely accessible. PMID 9499409. doi:10.1101/gad.12.5.755.
  9. Cabart P, Chew HK, Murphy S (July 2004). "BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II". Oncogene. 23 (31): 5316–29. PMID 15107825. doi:10.1038/sj.onc.1207684.
  10. Young TM, Wang Q, Pe'ery T, Mathews MB (September 2003). "The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. 23 (18): 6373–84. PMC 193714Freely accessible. PMID 12944466. doi:10.1128/MCB.23.18.6373-6384.2003.
  11. Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O (July 2003). "MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner". Mol. Cell. Biol. 23 (14): 4859–69. PMC 162212Freely accessible. PMID 12832472. doi:10.1128/MCB.23.14.4859-4869.2003.
  12. Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T (March 2003). "The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription". Mol. Cell. Biol. 23 (5): 1688–702. PMC 151712Freely accessible. PMID 12588988. doi:10.1128/MCB.23.5.1688-1702.2003.
  13. 1 2 De Falco G, Bagella L, Claudio PP, De Luca A, Fu Y, Calabretta B, Sala A, Giordano A (January 2000). "Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation". Oncogene. 19 (3): 373–9. PMID 10656684. doi:10.1038/sj.onc.1203305.
  14. 1 2 Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA (September 2000). "CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA". Mol. Cell. Biol. 20 (18): 6958–69. PMC 88771Freely accessible. PMID 10958691. doi:10.1128/MCB.20.18.6958-6969.2000.
  15. Amini S, Clavo A, Nadraga Y, Giordano A, Khalili K, Sawaya BE (August 2002). "Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells". Oncogene. 21 (37): 5797–803. PMID 12173051. doi:10.1038/sj.onc.1205754.
  16. Simone C, Bagella L, Bellan C, Giordano A (June 2002). "Physical interaction between pRb and cdk9/cyclinT2 complex". Oncogene. 21 (26): 4158–65. PMID 12037672. doi:10.1038/sj.onc.1205511.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.