Carbon dioxide equivalent

Carbon dioxide equivalent (CDE) and equivalent carbon dioxide (CO2e and CO2eq) are two related but distinct measures for describing how much global warming a given type and amount of greenhouse gas may cause, using the functionally equivalent amount or concentration of carbon dioxide (CO2) as the reference.

Global warming potential

Carbon dioxide equivalency is a quantity that describes, for a given mixture and amount of greenhouse gas, the amount of CO2 that would have the same global warming potential (GWP), when measured over a specified timescale (generally, 100 years). Carbon dioxide equivalency thus reflects the time-integrated radiative forcing of a quantity of emissions or rate of greenhouse gas emission—a flow into the atmosphere—rather than the instantaneous value of the radiative forcing of the stock (concentration) of greenhouse gases in the atmosphere described by CO2e.

The carbon dioxide equivalency for a gas is obtained by multiplying the mass and the GWP of the gas. The following units are commonly used:

For example, the GWP for methane over 100 years is 34[1] and for nitrous oxide 298. This means that emissions of 1 million metric tonnes of methane and nitrous oxide respectively is equivalent to emissions of 34 and 298 million metric tonnes of carbon dioxide.[2]

Equivalent carbon dioxide

Equivalent CO2 (CO2e) is the concentration of CO2 that would cause the same level of radiative forcing as a given type and concentration of greenhouse gas. Examples of such greenhouse gases are methane, perfluorocarbons, and nitrous oxide. CO2e is expressed as parts per million by volume, ppmv.

CO2e calculation examples:
  • The radiative forcing for pure CO2 is approximated by where C is the present concentration, is a constant, 5.35, and is the pre-industrial concentration, 280 ppm. Hence the value of CO2e for an arbitrary gas mixture with a known radiative forcing is given by in ppmv.
  • To calculate the radiative forcing for a 1998 gas mixture, IPCC 2001 gives the radiative forcing (relative to 1750) of various gases as: CO2=1.46 (corresponding to a concentration of 365 ppmv), CH4=0.48, N2O=0.15 and other minor gases =0.01 W/m2. The sum of these is 2.10 W/m2. Inserting this to the above formula, we obtain CO2e = 412 ppmv.
  • To calculate the CO2e of the additional radiative forcing calculated from April 2016's updated data:[3] ∑ RF(GHGs) = 3.3793, thus CO2e = 280 e3.3793/5.35 ppmv = 526.6 ppmv.

See also

References

Bibliography

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.