CLK2
Dual specificity protein kinase CLK2 is an enzyme that in humans is encoded by the CLK2 gene.[3][4][5]
Function
This gene encodes a member of the CLK family of dual specificity protein kinases. CLK family members have shown to interact with, and phosphorylate, serine/arginine-rich (SR) proteins of the spliceosomal complex, which is a part of the regulatory mechanism that enables the SR proteins to control RNA splicing. This protein kinase is involved in the regulation of several cellular processes and may serve as a link between cell cycle progression, apoptosis, and telomere length regulation.[5]
References
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- ↑ Hanes J, von der Kammer H, Klaudiny J, Scheit KH (Dec 1994). "Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases". Journal of Molecular Biology. 244 (5): 665–72. PMID 7990150. doi:10.1006/jmbi.1994.1763.
- ↑ Talmadge CB, Finkernagel S, Sumegi J, Sciorra L, Rabinow L (Oct 1998). "Chromosomal mapping of three human LAMMER protein-kinase-encoding genes". Human Genetics. 103 (4): 523–4. PMID 9856501. doi:10.1007/s004390050861.
- 1 2 "Entrez Gene: CLK2 CDC-like kinase 2".
External links
- Human CLK2 genome location and CLK2 gene details page in the UCSC Genome Browser.
Further reading
- Lee K, Du C, Horn M, Rabinow L (Nov 1996). "Activity and autophosphorylation of LAMMER protein kinases". The Journal of Biological Chemistry. 271 (44): 27299–303. PMID 8910305. doi:10.1074/jbc.271.44.27299.
- Winfield SL, Tayebi N, Martin BM, Ginns EI, Sidransky E (Oct 1997). "Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease". Genome Research. 7 (10): 1020–6. PMC 310674 . PMID 9331372. doi:10.1101/gr.7.10.1020.
- Duncan PI, Stojdl DF, Marius RM, Scheit KH, Bell JC (Jun 1998). "The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing". Experimental Cell Research. 241 (2): 300–8. PMID 9637771. doi:10.1006/excr.1998.4083.
- Tsujikawa M, Kurahashi H, Tanaka T, Okada M, Yamamoto S, Maeda N, Watanabe H, Inoue Y, Kiridoshi A, Matsumoto K, Ohashi Y, Kinoshita S, Shimomura Y, Nakamura Y, Tano Y (Oct 1998). "Homozygosity mapping of a gene responsible for gelatinous drop-like corneal dystrophy to chromosome 1p". American Journal of Human Genetics. 63 (4): 1073–7. PMC 1377503 . PMID 9758629. doi:10.1086/302071.
- Nayler O, Schnorrer F, Stamm S, Ullrich A (Dec 1998). "The cellular localization of the murine serine/arginine-rich protein kinase CLK2 is regulated by serine 141 autophosphorylation". The Journal of Biological Chemistry. 273 (51): 34341–8. PMID 9852100. doi:10.1074/jbc.273.51.34341.
- Moeslein FM, Myers MP, Landreth GE (Sep 1999). "The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B". The Journal of Biological Chemistry. 274 (38): 26697–704. PMID 10480872. doi:10.1074/jbc.274.38.26697.
- Nothwang HG, Kim HG, Aoki J, Geisterfer M, Kübart S, Wegner RD, van Moers A, Ashworth LK, Haaf T, Bell J, Arai H, Tommerup N, Ropers HH, Wirth J (Apr 2001). "Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain". Human Molecular Genetics. 10 (8): 797–806. PMID 11285245. doi:10.1093/hmg/10.8.797.
- Ravichandran LV, Chen H, Li Y, Quon MJ (Oct 2001). "Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor". Molecular Endocrinology. 15 (10): 1768–80. PMID 11579209. doi:10.1210/mend.15.10.0711.
- Jiang N, Bénard CY, Kébir H, Shoubridge EA, Hekimi S (Jun 2003). "Human CLK2 links cell cycle progression, apoptosis, and telomere length regulation". The Journal of Biological Chemistry. 278 (24): 21678–84. PMID 12670948. doi:10.1074/jbc.M300286200.
- Hillman RT, Green RE, Brenner SE (2005). "An unappreciated role for RNA surveillance". Genome Biology. 5 (2): R8. PMC 395752 . PMID 14759258. doi:10.1186/gb-2004-5-2-r8.
- Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (Aug 2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Current Biology. 14 (16): 1436–50. PMID 15324660. doi:10.1016/j.cub.2004.07.051.
- Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (Jan 2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research. 16 (1): 55–65. PMC 1356129 . PMID 16344560. doi:10.1101/gr.4039406.
- Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD, Boulton SJ (Apr 2007). "HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability". Nature Cell Biology. 9 (4): 391–401. PMID 17384638. doi:10.1038/ncb1555.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.