CHD2
Chromodomain-helicase-DNA-binding protein 2 is an enzyme that in humans is encoded by the CHD2 gene.[3][4]
Function
The CHD family of proteins is characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. CHD genes alter gene expression possibly by modification of chromatin structure thus altering access of the transcriptional apparatus to its chromosomal DNA template. CHD2 catalyzes the assembly of chromatin into periodic arrays; and the N-terminal region of CHD2, which contains tandem chromodomains, serves an auto-inhibitory role in both the DNA-binding and ATPase activities of CHD2.[5] Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene.[4]
Clinical significance
De Novo Mutations and deletions in this gene have been associated with cases of epileptic encephalopathies.[6][7][8][9][10]
CHD2 epilepsy is increasingly being identified as a subpopulation of Lennox-Gastaut Syndrome.[11][12]
Recently, de novo mutations or deletions in CHD2 has been linked to intellectual disability[13] and to autism.[14][15][16] Researchers found 27 genes which abolish function of the corresponding protein — in at least two people with autism, and 6 genes are mutated in three or more people with autism. These six genes — CHD8, DYRK1A, ANK2, GRIN2B, DSCAM and CHD2 — are the strongest autism candidates identified so far.
Family support
Syndromes associated with mutations or deletions in CHD2 can be devastating. Families of individuals with CHD2 mutations or deletions can join a research and support group.[17]
References
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- ↑ Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS (Oct 1997). "Characterization of the CHD family of proteins". Proceedings of the National Academy of Sciences of the United States of America. 94 (21): 11472–7. PMC 23509 . PMID 9326634. doi:10.1073/pnas.94.21.11472.
- 1 2 "Entrez Gene: CHD2 chromodomain helicase DNA binding protein 2".
- ↑ Liu JC, Ferreira CG, Yusufzai T (Jan 2015). "Human CHD2 is a chromatin assembly ATPase regulated by its chromo- and DNA-binding domains". The Journal of Biological Chemistry. 290 (1): 25–34. PMC 4281729 . PMID 25384982. doi:10.1074/jbc.M114.609156.
- ↑ Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J, Khan A, Dorschner MO, Weaver M, Calvert S, Malone S, Wallace G, Stanley T, Bye AM, Bleasel A, Howell KB, Kivity S, Mackay MT, Rodriguez-Casero V, Webster R, Korczyn A, Afawi Z, Zelnick N, Lerman-Sagie T, Lev D, Møller RS, Gill D, Andrade DM, Freeman JL, Sadleir LG, Shendure J, Berkovic SF, Scheffer IE, Mefford HC (Jul 2013). "Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1". Nature Genetics. 45 (7): 825–30. PMC 3704157 . PMID 23708187. doi:10.1038/ng.2646.
- ↑ Chénier S, Yoon G, Argiropoulos B, Lauzon J, Laframboise R, Ahn JW, Ogilvie CM, Lionel AC, Marshall CR, Vaags AK, Hashemi B, Boisvert K, Mathonnet G, Tihy F, So J, Scherer SW, Lemyre E, Stavropoulos DJ (2014). "CHD2 haploinsufficiency is associated with developmental delay, intellectual disability, epilepsy and neurobehavioural problems". Journal of Neurodevelopmental Disorders. 6 (1): 9. PMC 4022362 . PMID 24834135. doi:10.1186/1866-1955-6-9.
- ↑ Suls A, Jaehn JA, Kecskés A, Weber Y, Weckhuysen S, Craiu DC, Siekierska A, Djémié T, Afrikanova T, Gormley P, von Spiczak S, Kluger G, Iliescu CM, Talvik T, Talvik I, Meral C, Caglayan HS, Giraldez BG, Serratosa J, Lemke JR, Hoffman-Zacharska D, Szczepanik E, Barisic N, Komarek V, Hjalgrim H, Møller RS, Linnankivi T, Dimova P, Striano P, Zara F, Marini C, Guerrini R, Depienne C, Baulac S, Kuhlenbäumer G, Crawford AD, Lehesjoki AE, de Witte PA, Palotie A, Lerche H, Esguerra CV, De Jonghe P, Helbig I (Nov 2013). "De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome". American Journal of Human Genetics. 93 (5): 967–75. PMC 3824114 . PMID 24207121. doi:10.1016/j.ajhg.2013.09.017.
- ↑ EuroEPINOMICS-RES Consortium (Oct 2014). "De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies". American Journal of Human Genetics. 95 (4): 360–70. PMC 4185114 . PMID 25262651. doi:10.1016/j.ajhg.2014.08.013.
- ↑ Courage C, Houge G, Gallati S, Schjelderup J, Rieubland C (Sep 2014). "15q26.1 microdeletion encompassing only CHD2 and RGMA in two adults with moderate intellectual disability, epilepsy and truncal obesity". European Journal of Medical Genetics. 57 (9): 520–3. PMID 24932903. doi:10.1016/j.ejmg.2014.06.003.
- ↑ Lund C, Brodtkorb E, Øye AM, Røsby O, Selmer KK (Apr 2014). "CHD2 mutations in Lennox-Gastaut syndrome". Epilepsy & Behavior. 33: 18–21. PMID 24614520. doi:10.1016/j.yebeh.2014.02.005.
- ↑ Capelli LP, Krepischi AC, Gurgel-Giannetti J, Mendes MF, Rodrigues T, Varela MC, Koiffmann CP, Rosenberg C (Feb 2012). "Deletion of the RMGA and CHD2 genes in a child with epilepsy and mental deficiency". European Journal of Medical Genetics. 55 (2): 132–4. PMID 22178256. doi:10.1016/j.ejmg.2011.10.004.
- ↑ Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, Massicotte C, Ambalavanan A, Spiegelman D, Diallo O, Henrion E, Dionne-Laporte A, Fougerat A, Pshezhetsky AV, Venkateswaran S, Rouleau GA, Michaud JL (Oct 2014). "De novo mutations in moderate or severe intellectual disability". PLoS Genetics. 10 (10): e1004772. PMC 4214635 . PMID 25356899. doi:10.1371/journal.pgen.1004772.
- ↑ Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, Smith JD, Paeper B, Nickerson DA, Dea J, Dong S, Gonzalez LE, Mandell JD, Mane SM, Murtha MT, Sullivan CA, Walker MF, Waqar Z, Wei L, Willsey AJ, Yamrom B, Lee YH, Grabowska E, Dalkic E, Wang Z, Marks S, Andrews P, Leotta A, Kendall J, Hakker I, Rosenbaum J, Ma B, Rodgers L, Troge J, Narzisi G, Yoon S, Schatz MC, Ye K, McCombie WR, Shendure J, Eichler EE, State MW, Wigler M (Nov 2014). "The contribution of de novo coding mutations to autism spectrum disorder". Nature. 515 (7526): 216–21. PMC 4313871 . PMID 25363768. doi:10.1038/nature13908.
- ↑ De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S, Singh T, Klei L, Kosmicki J, Shih-Chen F, Aleksic B, Biscaldi M, Bolton PF, Brownfeld JM, Cai J, Campbell NG, Carracedo A, Chahrour MH, Chiocchetti AG, Coon H, Crawford EL, Curran SR, Dawson G, Duketis E, Fernandez BA, Gallagher L, Geller E, Guter SJ, Hill RS, Ionita-Laza J, Jimenz Gonzalez P, Kilpinen H, Klauck SM, Kolevzon A, Lee I, Lei I, Lei J, Lehtimäki T, Lin CF, Ma'ayan A, Marshall CR, McInnes AL, Neale B, Owen MJ, Ozaki N, Parellada M, Parr JR, Purcell S, Puura K, Rajagopalan D, Rehnström K, Reichenberg A, Sabo A, Sachse M, Sanders SJ, Schafer C, Schulte-Rüther M, Skuse D, Stevens C, Szatmari P, Tammimies K, Valladares O, Voran A, Li-San W, Weiss LA, Willsey AJ, Yu TW, Yuen RK, Cook EH, Freitag CM, Gill M, Hultman CM, Lehner T, Palotie A, Schellenberg GD, Sklar P, State MW, Sutcliffe JS, Walsh CA, Scherer SW, Zwick ME, Barett JC, Cutler DJ, Roeder K, Devlin B, Daly MJ, Buxbaum JD (Nov 2014). "Synaptic, transcriptional and chromatin genes disrupted in autism". Nature. 515 (7526): 209–15. PMC 4402723 . PMID 25363760. doi:10.1038/nature13772.
- ↑ O'Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, Vives L, Baker C, Hiatt JB, Nickerson DA, Bernier R, Shendure J, Eichler EE (2014). "Recurrent de novo mutations implicate novel genes underlying simplex autism risk". Nature Communications. 5: 5595. PMC 4249945 . PMID 25418537. doi:10.1038/ncomms6595.
- ↑ https://www.facebook.com/groups/1462485137354985/
Further reading
- Feys T, Poppe B, De Preter K, Van Roy N, Verhasselt B, De Paepe P, De Paepe A, Speleman F (Jul 2007). "A detailed inventory of DNA copy number alterations in four commonly used Hodgkin's lymphoma cell lines". Haematologica. 92 (7): 913–20. PMID 17606441. doi:10.3324/haematol.11073.
- Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T, Sugano S (Jan 2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Research. 16 (1): 55–65. PMC 1356129 . PMID 16344560. doi:10.1101/gr.4039406.
- Hiller M, Huse K, Platzer M, Backofen R (2005). "Non-EST based prediction of exon skipping and intron retention events using Pfam information". Nucleic Acids Research. 33 (17): 5611–21. PMC 1243800 . PMID 16204458. doi:10.1093/nar/gki870.
- Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (Jun 2004). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nature Biotechnology. 22 (6): 707–16. PMID 15146197. doi:10.1038/nbt971.
- Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (Dec 2003). "Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays". Science. 302 (5653): 2141–4. PMID 14684825. doi:10.1126/science.1090100.
External links
- FactorBook CHD2
- Human CHD2 genome location and CHD2 gene details page in the UCSC Genome Browser.