Cholecystokinin B receptor

CCKBR
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCCKBR, CCK-B, CCK2R, GASR, cholecystokinin B receptor
External IDsMGI: 99479 HomoloGene: 7258 GeneCards: CCKBR
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

887

12426

Ensembl

ENSG00000110148

ENSMUSG00000030898

UniProt

P32239

P56481

RefSeq (mRNA)

NM_176875
NM_001318029

NM_007627

RefSeq (protein)

NP_001304958
NP_795344

NP_031653

Location (UCSC)Chr 11: 6.26 – 6.27 MbChr 7: 105.43 – 105.47 Mb
PubMed search[1][2]
Wikidata
View/Edit HumanView/Edit Mouse

The cholecystokinin B receptor also known as CCKBR or CCK2 is a protein[3] that in humans is encoded by the CCKBR gene.[4]

This gene encodes a G protein-coupled receptor for gastrin and cholecystokinin (CCK),[5][6][7] regulatory peptides of the brain and gastrointestinal tract. This protein is a type B gastrin receptor, which has a high affinity for both sulfated and nonsulfated CCK analogs and is found principally in the central nervous system and the gastrointestinal tract. A misspliced transcript variant including an intron has been observed in cells from colorectal and pancreatic tumors.[8]

CNS effects

CCK receptors significantly influence neurotransmission in the brain, regulating anxiety, feeding, and locomotion. CCK-B expression may correlate parallel to anxiety and depression phenotypes in humans. CCK-B receptors possess a complex regulation of dopamine activity in the brain. CCK-B activation appears to possess a general inhibitory action on dopamine activity in the brain, opposing the dopamine-enhancing effects of CCK-A. However, the effects of CCK-B on dopamine activity vary depending on location.[9] CCK-B antagonism enhances dopamine release in rat striatum.[10] Activation enhances GABA release in rat anterior nucleus accumbens.[11] CCK-B receptors modulate dopamine release, and influence the development of tolerance to opioids.[12] CCK-B activation decreases amphetamine-induced DA release, and contributes to individual variability in response to amphetamine.[13]

In rats, CCK-B antagonism prevents the stress-induced reactivation of cocaine-induced conditioned place preference, and prevents the long-term maintenance and reinstatement of morphine-induced CPP.[14] Blockade of CCK-B potentiates cocaine-induced dopamine overflow in rat striatum.[10] CCK-B may pose a modulatory role in parkinson's disease. Blockade of CCK-B in dopamine-depleted squirrel monkeys induces significant enhancement of locomotor response to L-DOPA.[15] One study shows that visual hallucinations in Parkinson's disease are associated with cholecystokinin −45C>T polymorphism, and this association is still observed in the presence of the cholecystokinin-A receptor TC/CC genotype, indicating a possible interaction of these two genes in the visual hallucinogenesis in Parkinson's disease.[16]

Gastrointestinal Tract

The cholecystokinin B receptor is stimulated by CCK and gastrin in the stomach during digestion.

Selective Ligands

The cholecystokinin B receptor responds to a number of ligands.

Agonists

Antagonists

Inverse agonists

See also

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Noble F, Roques BP (Jul 1999). "CCK-B receptor: chemistry, molecular biology, biochemistry and pharmacology". Progress in Neurobiology. 58 (4): 349–79. PMID 10368033. doi:10.1016/S0301-0082(98)00090-2.
  4. Pisegna JR, de Weerth A, Huppi K, Wank SA (Nov 1992). "Molecular cloning of the human brain and gastric cholecystokinin receptor: structure, functional expression and chromosomal localization". Biochemical and Biophysical Research Communications. 189 (1): 296–303. PMID 1280419. doi:10.1016/0006-291X(92)91557-7.
  5. Harikumar KG, Clain J, Pinon DI, Dong M, Miller LJ (Jan 2005). "Distinct molecular mechanisms for agonist peptide binding to types A and B cholecystokinin receptors demonstrated using fluorescence spectroscopy". The Journal of Biological Chemistry. 280 (2): 1044–50. PMID 15520004. doi:10.1074/jbc.M409480200.
  6. Aloj L, Caracò C, Panico M, Zannetti A, Del Vecchio S, Tesauro D, De Luca S, Arra C, Pedone C, Morelli G, Salvatore M (Mar 2004). "In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging". Journal of Nuclear Medicine. 45 (3): 485–94. PMID 15001692.
  7. Galés C, Poirot M, Taillefer J, Maigret B, Martinez J, Moroder L, Escrieut C, Pradayrol L, Fourmy D, Silvente-Poirot S (May 2003). "Identification of tyrosine 189 and asparagine 358 of the cholecystokinin 2 receptor in direct interaction with the crucial C-terminal amide of cholecystokinin by molecular modeling, site-directed mutagenesis, and structure/affinity studies". Molecular Pharmacology. 63 (5): 973–82. PMID 12695525. doi:10.1124/mol.63.5.973.
  8. "Entrez Gene: CCKBR cholecystokinin B receptor".
  9. Altar CA, Boyar WC (Apr 1989). "Brain CCK-B receptors mediate the suppression of dopamine release by cholecystokinin". Brain Research. 483 (2): 321–6. PMID 2706523. doi:10.1016/0006-8993(89)90176-5.
  10. 1 2 Loonam TM, Noailles PA, Yu J, Zhu JP, Angulo JA (Jun 2003). "Substance P and cholecystokinin regulate neurochemical responses to cocaine and methamphetamine in the striatum". Life Sciences. 73 (6): 727–39. PMID 12801594. doi:10.1016/S0024-3205(03)00393-X.
  11. Lanza M, Makovec F (Jan 2000). "Cholecystokinin (CCK) increases GABA release in the rat anterior nucleus accumbens via CCK(B) receptors located on glutamatergic interneurons". Naunyn-Schmiedeberg's Archives of Pharmacology. 361 (1): 33–8. PMID 10651144. doi:10.1007/s002109900161.
  12. Dourish CT, O'Neill MF, Coughlan J, Kitchener SJ, Hawley D, Iversen SD (Jan 1990). "The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat". European Journal of Pharmacology. 176 (1): 35–44. PMID 2311658. doi:10.1016/0014-2999(90)90129-T.
  13. Higgins GA, Sills TL, Tomkins DM, Sellers EM, Vaccarino FJ (Aug 1994). "Evidence for the contribution of CCKB receptor mechanisms to individual differences in amphetamine-induced locomotion". Pharmacology, Biochemistry, and Behavior. 48 (4): 1019–24. PMID 7972279. doi:10.1016/0091-3057(94)90214-3.
  14. Lu L, Huang M, Ma L, Li J (Apr 2001). "Different role of cholecystokinin (CCK)-A and CCK-B receptors in relapse to morphine dependence in rats". Behavioural Brain Research. 120 (1): 105–10. PMID 11173090. doi:10.1016/S0166-4328(00)00361-2.
  15. Boyce S, Rupniak NM, Tye S, Steventon MJ, Iversen SD (Aug 1990). "Modulatory role for CCK-B antagonists in Parkinson's disease". Clinical Neuropharmacology. 13 (4): 339–47. PMID 1976438. doi:10.1097/00002826-199008000-00009.
  16. Wang J, Si YM, Liu ZL, Yu L (Jun 2003). "Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson's disease". Pharmacogenetics. 13 (6): 365–9. PMID 12777967. doi:10.1097/00008571-200306000-00008.

Further reading

  • Herget T, Sethi T, Wu SV, Walsh JH, Rozengurt E (Mar 1994). "Cholecystokinin stimulates Ca2+ mobilization and clonal growth in small cell lung cancer through CCKA and CCKB/gastrin receptors". Annals of the New York Academy of Sciences. 713: 283–97. PMID 8185170. doi:10.1111/j.1749-6632.1994.tb44076.x. 
  • Lee YM, Beinborn M, McBride EW, Lu M, Kolakowski LF, Kopin AS (Apr 1993). "The human brain cholecystokinin-B/gastrin receptor. Cloning and characterization". The Journal of Biological Chemistry. 268 (11): 8164–9. PMID 7681836. 
  • Ito M, Iwata N, Taniguchi T, Murayama T, Chihara K, Matsui T (Oct 1994). "Functional characterization of two cholecystokinin-B/gastrin receptor isoforms: a preferential splice donor site in the human receptor gene". Cell Growth & Differentiation. 5 (10): 1127–35. PMID 7848914. 
  • Miyake A (Mar 1995). "A truncated isoform of human CCK-B/gastrin receptor generated by alternative usage of a novel exon". Biochemical and Biophysical Research Communications. 208 (1): 230–7. PMID 7887934. doi:10.1006/bbrc.1995.1328. 
  • Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1-2): 171–4. PMID 8125298. doi:10.1016/0378-1119(94)90802-8. 
  • Zimonjic DB, Popescu NC, Matsui T, Ito M, Chihara K (1993). "Localization of the human cholecystokinin-B/gastrin receptor gene (CCKBR) to chromosome 11p15.5-->p15.4 by fluorescence in situ hybridization". Cytogenetics and Cell Genetics. 65 (3): 184–5. PMID 8222757. doi:10.1159/000133628. 
  • de Weerth A, Pisegna JR, Huppi K, Wank SA (Jul 1993). "Molecular cloning, functional expression and chromosomal localization of the human cholecystokinin type A receptor". Biochemical and Biophysical Research Communications. 194 (2): 811–8. PMID 8343165. doi:10.1006/bbrc.1993.1894. 
  • Ito M, Matsui T, Taniguchi T, Tsukamoto T, Murayama T, Arima N, Nakata H, Chiba T, Chihara K (Aug 1993). "Functional characterization of a human brain cholecystokinin-B receptor. A trophic effect of cholecystokinin and gastrin". The Journal of Biological Chemistry. 268 (24): 18300–5. PMID 8349705. 
  • Song I, Brown DR, Wiltshire RN, Gantz I, Trent JM, Yamada T (Oct 1993). "The human gastrin/cholecystokinin type B receptor gene: alternative splice donor site in exon 4 generates two variant mRNAs". Proceedings of the National Academy of Sciences of the United States of America. 90 (19): 9085–9. PMC 47506Freely accessible. PMID 8415658. doi:10.1073/pnas.90.19.9085. 
  • Beinborn M, Lee YM, McBride EW, Quinn SM, Kopin AS (Mar 1993). "A single amino acid of the cholecystokinin-B/gastrin receptor determines specificity for non-peptide antagonists". Nature. 362 (6418): 348–50. PMID 8455720. doi:10.1038/362348a0. 
  • Silvente-Poirot S, Wank SA (Jun 1996). "A segment of five amino acids in the second extracellular loop of the cholecystokinin-B receptor is essential for selectivity of the peptide agonist gastrin". The Journal of Biological Chemistry. 271 (25): 14698–706. PMID 8663021. doi:10.1074/jbc.271.25.14698. 
  • Tarasova NI, Wank SA, Hudson EA, Romanov VI, Czerwinski G, Resau JH, Michejda CJ (Feb 1997). "Endocytosis of gastrin in cancer cells expressing gastrin/CCK-B receptor". Cell and Tissue Research. 287 (2): 325–33. PMID 8995203. doi:10.1007/s004410050757. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1-2): 149–56. PMID 9373149. doi:10.1016/S0378-1119(97)00411-3. 
  • O'Briant KC, Ali SY, Weier HU, Bepler G (Aug 1998). "An 84-kilobase physical map and repeat polymorphisms of the gastrin/cholecystokinin brain receptor region at the junction of chromosome segments 11p15.4 and 15.5". Chromosome Research. 6 (5): 415–8. PMID 9872672. doi:10.1023/A:1009289625352. 
  • Monstein HJ, Nilsson I, Ellnebo-Svedlund K, Svensson SP (1999). "Cloning and characterization of 5'-end alternatively spliced human cholecystokinin-B receptor mRNAs". Receptors & Channels. 6 (3): 165–77. PMID 10100325. 
  • Daulhac L, Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C (Jul 1999). "Src-family tyrosine kinases in activation of ERK-1 and p85/p110-phosphatidylinositol 3-kinase by G/CCKB receptors". The Journal of Biological Chemistry. 274 (29): 20657–63. PMID 10400698. doi:10.1074/jbc.274.29.20657. 
  • Silvente-Poirot S, Escrieut C, Galès C, Fehrentz JA, Escherich A, Wank SA, Martinez J, Moroder L, Maigret B, Bouisson M, Vaysse N, Fourmy D (Aug 1999). "Evidence for a direct interaction between the penultimate aspartic acid of cholecystokinin and histidine 207, located in the second extracellular loop of the cholecystokinin B receptor". The Journal of Biological Chemistry. 274 (33): 23191–7. PMID 10438490. doi:10.1074/jbc.274.33.23191. 
  • Kulaksiz H, Arnold R, Göke B, Maronde E, Meyer M, Fahrenholz F, Forssmann WG, Eissele R (Feb 2000). "Expression and cell-specific localization of the cholecystokinin B/gastrin receptor in the human stomach". Cell and Tissue Research. 299 (2): 289–98. PMID 10741470. doi:10.1007/s004410050027. 

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.