Brown–Gitler spectrum
In topology, a discipline within mathematics, the Brown–Gitler spectrum is a spectrum whose cohomology is a certain cyclic module over the Steenrod algebra.[1]
Brown–Gitler spectra are defined by the isomorphism:[2]
History
The concept was introduced by mathematicians Edgar Brown and Samuel Gitler in their paper "A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra", Topology 12 (1973), 283–295.[1]
In topology, Brown–Gitler spectrum is related to the concepts of Segal conjecture and Burnside ring.[3]
Applications
Brown–Gitler spectra have had many important applications in homotopy theory.[4]
References
- 1 2 "Brown–Gitler spectrum in nLab".
- ↑ "Brown–Gitler Spe tra" (PDF).
- ↑ Gitler, Samuel; González, Jesús (1 January 2006). "Recent Developments in Algebraic Topology: A Conference to Celebrate Sam Gitler's 70th Birthday, December 3–6, 2003, San Miguel de Allende, México". American Mathematical Soc. – via Google Books.
- ↑ Cohen, Fred R.; Davis, Donald M.; Goerss, Paul G.; Mahowald, Mark E. (1 January 1988). "Integral Brown–Gitler Spectra". 103 (4): 1299–1304. doi:10.2307/2047129 – via JSTOR.
External links
- Hazewinkel, Michiel, ed. (2001) [1994], "Brown-Gitler_spectra", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.