Biconvex optimization
Biconvex optimization is a generalization of convex optimization where the objective function and the constraint set can be biconvex. There are methods that can find the global optimum of these problems.[1][2]
A set is called a biconvex set on if for every fixed , is a convex set in and for every fixed , is a convex set in .
A function is called a biconvex function if fixing , is convex over and fixing , is convex over .
A common practice for solving a biconvex problem (which does not guarantee global optimality of the solution) is alternatively updating by fixing one of them and solving the corresponding convex optimization problem.[1]
References
- 1 2 Gorski, Jochen; Pfeuffer, Frank; Klamroth, Kathrin (22 June 2007). "Biconvex sets and optimization with biconvex functions: a survey and extensions" (PDF). Mathematical Methods of Operations Research. 66 (3): 373–407. doi:10.1007/s00186-007-0161-1.
- ↑ Floudas, Christodoulos A. (2000). Deterministic global optimization : theory, methods, and applications. Dordrecht [u.a.]: Kluwer Academic Publ. ISBN 978-0-7923-6014-8.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.