Aurone

Aurone
Names
IUPAC name
2-Benzylidene-1-benzofuran-3-one
Identifiers
3D model (JSmol)
ChemSpider
Properties
C15H10O2
Molar mass 222.24 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Aurone is a heterocyclic chemical compound which is a type of flavonoid.[1] There are two isomers of the molecule, with (E)- and (Z)-configurations. The molecule contains a benzofuran element associated with a benzylidene linked in position 2. In aurone, a chalcone-like group is closed into a 5-membered ring instead of the 6-membered ring more typical of flavonoids.

Skeletal structure of an (Z)-aurone with numbering scheme used for nomenclature of derivatives

Aurone forms the core for a family of derivatives which are known collectively as aurones. Aurones are plant flavonoids that provide yellow color to the flowers of some popular ornamental plants, such as snapdragon and cosmos.[2] Aurones including 4'-chloro-2-hydroxyaurone (C15H11O3Cl) and 4'-chloroaurone (C15H9O2Cl) can also be found in the brown alga Spatoglossum variabile.[3]

Most aurones are in a (Z)-configuration, which is the more stable configuration according to Austin Model 1 computation,[3] but there are also some in the (E)-configurations such as (E)-3'-O-β-d-glucopyranosyl-4,5,6,4'-tetrahydroxy-7,2'-dimethoxyaurone, found in Gomphrena agrestis.[4]

It has been shown that aurones possess antifungal properties[5] and analogy with flavonoids suggests that aurones could have other interesting biological properties.[6]

Metabolism

References

  1. Nakayama, T (2002). "Enzymology of aurone biosynthesis". Journal of Bioscience and Bioengineering. 94 (6): 487–91. PMID 16233339. doi:10.1016/S1389-1723(02)80184-0.
  2. 1 2 Nakayama, T; Sato, T; Fukui, Y; Yonekura-Sakakibara, K; Hayashi, H; Tanaka, Y; Kusumi, T; Nishino, T (2001). "Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration". FEBS Letters. 499 (1–2): 107–11. PMID 11418122. doi:10.1016/S0014-5793(01)02529-7.
  3. 1 2 Atta-Ur-Rahman; Choudhary, MI; Hayat, S; Khan, AM; Ahmed, A (2001). "Two new aurones from marine brown alga Spatoglossum variabile". Chemical & pharmaceutical bulletin. 49 (1): 105–7. PMID 11201212. doi:10.1248/cpb.49.105.
  4. Ferreira, EO; Salvador, MJ; Pral, EM; Alfieri, SC; Ito, IY; Dias, DA (2004). "A new heptasubstituted (E)-aurone glucoside and other aromatic compounds of Gomphrena agrestis with biological activity" (PDF). Zeitschrift für Naturforschung C. 59 (7–8): 499–505. PMID 15813368.
  5. Sutton, Caleb L.; Taylor, Zachary E.; Farone, Mary B.; Handy, Scott T. (2017-02-15). "Antifungal activity of substituted aurones". Bioorganic & Medicinal Chemistry Letters. 27 (4): 901–903. doi:10.1016/j.bmcl.2017.01.012.
  6. Villemin, Didier; Martin, Benoit; Bar, Nathalie (1998). "Application of Microwave in Organic Synthesis. Dry Synthesis of 2-Arylmethylene-3(2)-naphthofuranones". Molecules. 3 (3): 88. doi:10.3390/30300088.
  7. Hispidol on metabolomics.jp
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.