Arithmetic combinatorics

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

Scope

Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive combinatorics is the special case when only the operations of addition and subtraction are involved.

Arithmetic combinatorics is explained in Green's review of "Additive Combinatorics" by Tao and Vu.

Important results

Szemerédi's theorem

Szemerédi's theorem is a result in arithmetic combinatorics concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured[1] that every set of integers A with positive natural density contains a k term arithmetic progression for every k. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's theorem.

Green-Tao theorem and extensions

The Green–Tao theorem, proved by Ben Green and Terence Tao in 2004,[2] states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words there exist arithmetic progressions of primes, with k terms, where k can be any natural number. The proof is an extension of Szemerédi's theorem.

In 2006, Terence Tao and Tamar Ziegler extended the result to cover polynomial progressions.[3] More precisely, given any integer-valued polynomials P1,..., Pk in one unknown m all with constant term 0, there are infinitely many integers x, m such that x + P1(m), ..., x + Pk(m) are simultaneously prime. The special case when the polynomials are m, 2m, ..., km implies the previous result that there are length k arithmetic progressions of primes.

Example

If A is a set of N integers, how large or small can the sumset

the difference set

and the product set

be, and how are the sizes of these sets related? (Not to be confused: the terms difference set and product set can have other meanings.)

Extensions

The sets being studied may also be subsets of algebraic structures other than the integers, for example, groups, rings and fields.[4]

See also

Notes

  1. Erdős, Paul; Turán, Paul (1936). "On some sequences of integers" (PDF). Journal of the London Mathematical Society. 11 (4): 261–264. MR 1574918. doi:10.1112/jlms/s1-11.4.261..
  2. Green, Ben; Tao, Terence (2008). "The primes contain arbitrarily long arithmetic progressions". Annals of Mathematics. 167 (2): 481–547. MR 2415379. arXiv:math.NT/0404188Freely accessible. doi:10.4007/annals.2008.167.481..
  3. Tao, Terence; Ziegler, Tamar (2008). "The primes contain arbitrarily long polynomial progressions". Acta Mathematica. 201 (2): 213–305. MR 2461509. arXiv:math.NT/0610050Freely accessible. doi:10.1007/s11511-008-0032-5..
  4. Bourgain, Jean; Katz, Nets; Tao, Terence (2004). "A sum-product estimate in finite fields, and applications". Geometric and Functional Analysis. 14 (1): 27–57. MR 2053599. doi:10.1007/s00039-004-0451-1.

References

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.