Antisymmetric tensor
In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged.[1][2] The index subset must generally either be all covariant or all contravariant.
For example,
holds when the tensor is antisymmetric with respect to its first three indices.
If a tensor changes sign under exchange of each pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor of order p may be referred to as a p-form, and a completely antisymmetric contravariant tensor may be referred to as a p-vector.
Antisymmetric and symmetric tensors
A tensor A that is antisymmetric on indices i and j has the property that the contraction with a tensor B that is symmetric on indices i and j is identically 0.
For a general tensor U with components and a pair of indices i and j, U has symmetric and antisymmetric parts defined as:
(symmetric part) (antisymmetric part).
Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in
Notation
A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, in arbitrary dimensions, for an order 2 covariant tensor M,
and for an order 3 covariant tensor T,
In any number of dimensions, these are equivalent to
More generally, irrespective of the number of dimensions, antisymmetrization over p indices may be expressed as
In the above,
is the generalized Kronecker delta of the appropriate order.
Examples
Totally antisymmetric tensors include:
- All scalars and vectors (tensors of order 0 and 1) are totally antisymmetric (as well as being totally symmetric)
- The electromagnetic tensor, in electromagnetism
- The Riemannian volume form on a pseudo-Riemannian manifold
See also
- Levi-Civita symbol
- Symmetric tensor
- Antisymmetric matrix
- Antisymmetric relation
- Exterior algebra
- Ricci calculus
Notes
- ↑ K.F. Riley; M.P. Hobson; S.J. Bence (2010). Mathematical methods for physics and engineering. Cambridge University Press. ISBN 978-0-521-86153-3.
- ↑ Juan Ramón Ruíz-Tolosa; Enrique Castillo (2005). From Vectors to Tensors. Springer. p. 225. ISBN 978-3-540-22887-5. section §7.
References
- J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman & Co. pp. 85–86, §3.5. ISBN 0-7167-0344-0.
- R. Penrose (2007). The Road to Reality. Vintage books. ISBN 0-679-77631-1.