Allogamy
"Allogamy" (cross-fertilization) is a term used in the field of biological reproduction describing the fertilization of an ovum from one individual with the spermatozoa of another. By contrast, autogamy is the term used for self-fertilization. In humans, the fertilization event is an instance of allogamy. Self-fertilization occurs in hermaphroditic organisms where the two gametes fused in fertilization come from the same individual. This is common in plants (see Sexual reproduction in plants) and certain protozoans.
In plants, allogamy is used specifically to mean the use of pollen from one plant to fertilize the flower of another plant and usually synonymous with the term "cross-fertilization" or "cross-pollination" (outcrossing), though the latter term can be used more specifically to mean pollen exchange between different plant strains or even different plant species (where the term cross-hybridization can be used) rather than simply between different individuals.
Parasites having complex life cycles can pass through alternate stages of allogamous and autogamous reproduction, and the description of a hitherto unknown allogamous stage can be a significant finding with implications for human disease.
Avoidance of inbreeding depression
Allogamy ordinarily involves cross-fertilization between unrelated individuals leading to the masking of deleterious recessive alleles in progeny.[1][2] By contrast, close inbreeding, including self-fertilization in plants and automictic parthenogenesis in hymenoptera, tends to lead to the harmful expression of deleterious recessive alleles (inbreeding depression).
In dioecious plants, the stigma may receive pollen from several different potential donors. As multiple pollen tubes from the different donors grow through the stigma to reach the ovary, the receiving maternal plant may carry out pollen selection favoring pollen from less related donor plants.[3] Thus post-pollination selection may occur in order to promote allogamy and avoid inbreeding depression. Also, seeds may be aborted selectively depending on donor–recipient relatedness.[3]
See also
References
- ↑ Bernstein H, Hopf FA, Michod RE (1987). "The molecular basis of the evolution of sex". Adv. Genet. 24: 323–70.
- ↑ Michod, R.E. (1994). "Eros and Evolution: A Natural Philosophy of Sex" Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN 978-0201442328
- 1 2 Teixeira S, Foerster K, Bernasconi G (2009). "Evidence for inbreeding depression and post-pollination selection against inbreeding in the dioecious plant Silene latifolia". Heredity (Edinb). 102 (2): 101–12. PMID 18698334. doi:10.1038/hdy.2008.86.
- Kai-Yi Chen, Steven D. Tanksley. "High-Resolution Mapping and Functional Analysis of se2.1: A Major Stigma Exsertion Quantitative Trait Locus Associated With the Evolution From Allogamy to Autogamy in the Genus Lycopersicon 168 (3): 1563 -- Genetics". www.genetics.org. Retrieved 2009-08-08.
- Mulligan, Gerald. "Autogamy, allogamy, and pollination in some Canadian weeds Can. J. Bot. 50(8): 1767-1771 (1972)". rparticle.web-p.cisti.nrc.ca. Retrieved 2009-08-08.