Correspondence (mathematics)

In mathematics and mathematical economics, correspondence is a term with several related but distinct meanings.

However, the definition of a correspondence in algebraic geometry is not completely standard. For instance, Fulton, in his book on Intersection theory,[3] uses the definition above. In literature, however, a correspondence from a variety X to a variety Y is often taken to be a subset Z of X×Y such that Z is finite and surjective over each component of X. Note the asymmetry in this latter definition; which talks about a correspondence from X to Y rather than a correspondence between X and Y. The typical example of the latter kind of correspondence is the graph of a function f:XY. Correspondences also play an important role in the construction of motives.[4]
An example of a correspondence in this sense is the best response correspondence in game theory, which gives the optimal action for a player as a function of the strategies of all other players. If there is always a unique best action given what the other players are doing, then this is a function. If for some opponent's strategy, there is a set of best responses that are equally good, then this is a correspondence.

See also

References

  1. Encyclopedic dictionary of Mathematics. MIT. 2000. pp. 1330–1331. ISBN 0-262-59020-4.
  2. H. S. M. Coxeter (1959) The Real Projective Plane, page 18
  3. Fulton, William (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98549-7, MR 1644323
  4. Mazza, Carlo; Voevodsky, Vladimir; Weibel, Charles (2006), Lecture notes on motivic cohomology, Clay Mathematics Monographs, 2, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3847-1, MR 2242284
  5. Mas-Colell, Andreu; Whinston, Michael D.; Green, Jerry R. (1995). Microeconomic Analysis. New York: Oxford University Press. pp. 949–951. ISBN 0-19-507340-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.