Affine coordinate system

In mathematics, an affine coordinate system is a coordinate system on an affine space where each coordinate is an affine map to the number line. In other words, it is an injective affine map from an affine space A to the coordinate space Kn, where K is the field of scalars, for example, the real numbers R.

The most important case of affine coordinates in Euclidean spaces is real-valued Cartesian coordinate system. Orthogonal affine coordinate systems are rectangular, and others are referred to as oblique.

A system of n coordinates on n-dimensional space is defined by a (n+1)-tuple (O, R1, … Rn) of points not belonging to any affine subspace of a lesser dimension. Any given coordinate n-tuple gives the point by the formula:

(x1, … xn) ↦ O + x1 (R1 − O) + … + xn (Rn − O) .

Note that Rj − O are difference vectors with the origin in O and ends in Rj.

An affine space cannot have a coordinate system with n less than its dimension, but n may indeed be greater, which means that the coordinate map is not necessary surjective. Examples of n-coordinate system in an (n−1)-dimensional space are barycentric coordinates and affine "homogeneous" coordinates (1, x1, … , xn−1). In the latter case the x0 coordinate is equal to 1 on all space, but this "reserved" coordinate allows for matrix representation of affine maps similar to one used for projective maps.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.