AFF1
AF4/FMR2 family member 1 is a protein that in humans is encoded by the AFF1 gene.[3][4][5][6]
DISCONTINUED: The record for PBM1 has been withdrawn by HGNC.[6]
References
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- ↑ Domer PH, Fakharzadeh SS, Chen CS, Jockel J, Johansen L, Silverman GA, Kersey JH, Korsmeyer SJ (Sep 1993). "Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product". Proc Natl Acad Sci U S A. 90 (16): 7884–8. PMC 47247 . PMID 7689231. doi:10.1073/pnas.90.16.7884.
- ↑ Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E (Dec 1992). "The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene". Cell. 71 (4): 701–8. PMID 1423625. doi:10.1016/0092-8674(92)90603-A.
- ↑ Chen CS, Hilden JM, Frestedt J, Domer PH, Moore R, Korsmeyer SJ, Kersey JH (Sep 1993). "The chromosome 4q21 gene (AF-4/FEL) is widely expressed in normal tissues and shows breakpoint diversity in t(4;11)(q21;q23) acute leukemia". Blood. 82 (4): 1080–5. PMID 8353274.
- 1 2 "Entrez Gene: AFF1 AF4/FMR2 family, member 1".
External links
Further reading
- Morrissey J, Tkachuk DC, Milatovich A, et al. (1993). "A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias.". Blood. 81 (5): 1124–31. PMID 8443374.
- Nakamura T, Alder H, Gu Y, et al. (1993). "Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs.". Proc. Natl. Acad. Sci. U.S.A. 90 (10): 4631–5. PMC 46566 . PMID 8506309. doi:10.1073/pnas.90.10.4631.
- Frestedt JL, Hilden JM, Kersey JH (1996). "AF4/FEL, a gene involved in infant leukemia: sequence variations, gene structure, and possible homology with a genomic sequence on 5q31.". DNA Cell Biol. 15 (8): 669–78. PMID 8769569. doi:10.1089/dna.1996.15.669.
- Nilson I, Reichel M, Ennas MG, et al. (1997). "Exon/intron structure of the human AF-4 gene, a member of the AF-4/LAF-4/FMR-2 gene family coding for a nuclear protein with structural alterations in acute leukaemia.". Br. J. Haematol. 98 (1): 157–69. PMID 9233580. doi:10.1046/j.1365-2141.1997.1522966.x.
- Megonigal MD, Rappaport EF, Jones DH, et al. (1997). "Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias.". Proc. Natl. Acad. Sci. U.S.A. 94 (21): 11583–8. PMC 23546 . PMID 9326653. doi:10.1073/pnas.94.21.11583.
- Felix CA, Kim CS, Megonigal MD, et al. (1997). "Panhandle polymerase chain reaction amplifies MLL genomic translocation breakpoint involving unknown partner gene.". Blood. 90 (12): 4679–86. PMID 9389682.
- Isnard P, Depetris D, Mattei MG, et al. (1999). "cDNA cloning, expression and chromosomal localization of the murine AF-4 gene involved in human leukemia.". Mamm. Genome. 9 (12): 1065–8. PMID 9880680. doi:10.1007/s003359900927.
- Felix CA, Hosler MR, Slater DJ, et al. (2000). "Duplicated regions of AF-4 intron 4 at t(4;11) translocation breakpoints.". Mol. Diagn. 4 (4): 269–83. PMID 10671636. doi:10.1016/S1084-8592(99)80002-2.
- Reichel M, Gillert E, Breitenlohner I, et al. (2001). "Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research.". Leukemia. 15 (2): 286–8. PMID 11236948. doi:10.1038/sj.leu.2402018.
- Raffini LJ, Slater DJ, Rappaport EF, et al. (2002). "Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6.". Proc. Natl. Acad. Sci. U.S.A. 99 (7): 4568–73. PMC 123688 . PMID 11930009. doi:10.1073/pnas.062066799.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. PMC 139241 . PMID 12477932. doi:10.1073/pnas.242603899.
- Bertrand FE, Spengeman JD, Shah N, LeBien TW (2004). "B-cell development in the presence of the MLL/AF4 oncoprotein proceeds in the absence of HOX A7 and HOX A9 expression.". Leukemia. 17 (12): 2454–9. PMID 14562113. doi:10.1038/sj.leu.2403178.
- Caslini C, Serna A, Rossi V, et al. (2004). "Modulation of cell cycle by graded expression of MLL-AF4 fusion oncoprotein.". Leukemia. 18 (6): 1064–71. PMID 14990976. doi:10.1038/sj.leu.2403321.
- Bursen A, Moritz S, Gaussmann A, et al. (2004). "Interaction of AF4 wild-type and AF4.MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology?". Oncogene. 23 (37): 6237–49. PMID 15221006. doi:10.1038/sj.onc.1207837.
- Colland F, Jacq X, Trouplin V, et al. (2004). "Functional proteomics mapping of a human signaling pathway.". Genome Res. 14 (7): 1324–32. PMC 442148 . PMID 15231748. doi:10.1101/gr.2334104.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins.". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. PMC 514446 . PMID 15302935. doi:10.1073/pnas.0404720101.
- Xia ZB, Popovic R, Chen J, et al. (2005). "The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression.". Proc. Natl. Acad. Sci. U.S.A. 102 (39): 14028–33. PMC 1236570 . PMID 16169901. doi:10.1073/pnas.0506464102.