90,000
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | ninety thousand | |||
Ordinal |
90000th (ninety thousandth) | |||
Factorization | 24× 32× 54 | |||
Roman numeral | XC | |||
Binary | 101011111100100002 | |||
Ternary | 111201101003 | |||
Quaternary | 1113321004 | |||
Quinary | 103400005 | |||
Senary | 15324006 | |||
Octal | 2576208 | |||
Duodecimal | 4410012 | |||
Hexadecimal | 15F9016 | |||
Vigesimal | B50020 | |||
Base 36 | 1XG036 |
90000 (ninety thousand) is the natural number that comes after 89999 and before 90001.
Selected numbers in the range 90000–99999
- 90000 – sum of the cubes of the first 24 positive integers, square of 300.
- 90625 – the only five-digit automorphic number: 906252 = 8212890625[1]
- 93312 – Leyland number: 66 + 66.[2] Also a 3-smooth number.
- 94249 – palindromic square: 3072
- 94932 – Leyland number: 75 + 57[2]
- 95121 – Kaprekar number: 951212 = 9048004641; 90480 + 04641 = 95121[3]
- 96557 – Markov number: 52 + 64662 + 965572 = 3 × 5 × 6466 × 96557[4]
- 98304 – 3-smooth number
- 99066 – largest number whose square uses all of the decimal digits once: 990662 = 9814072356. It is also a rotationally symmetric ambigram in decimal.
- 99991 - largest five-digit prime number
- 99999 – repdigit, Kaprekar number: 999992 = 9999800001; 99998 + 00001 = 99999[3]
References
- ↑ "Sloane's A003226 : Automorphic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- 1 2 "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- 1 2 "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- ↑ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.