8000 (number)
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | eight thousand | |||
Ordinal |
8000th (eight thousandth) | |||
Factorization | 26× 53 | |||
Roman numeral | VMMM | |||
Unicode symbol(s) | VMMM, vmmm | |||
Binary | 11111010000002 | |||
Ternary | 1012220223 | |||
Quaternary | 13310004 | |||
Quinary | 2240005 | |||
Senary | 1010126 | |||
Octal | 175008 | |||
Duodecimal | 476812 | |||
Hexadecimal | 1F4016 | |||
Vigesimal | 100020 | |||
Base 36 | 66836 |
8000 (eight thousand) is the natural number following 7999 and preceding 8001.
8000 is the cube of 20, as well as the sum of four consecutive integers cubed, 113 + 123 + 133 + 143.
The fourteen tallest mountains on Earth, which exceed 8000 meters in height, are sometimes referred to as eight-thousanders.[1]
Selected numbers in the range 8001–8999
- 8001 – triangular number
- 8002 – Mertens function zero
- 8011 – Mertens function zero, super-prime
- 8012 – Mertens function zero
- 8017 – Mertens function zero
- 8021 – Mertens function zero
- 8039 – safe prime
- 8059 – super-prime
- 8069 – Sophie Germain prime
- 8093 – Sophie Germain prime
- 8100 – 902
- 8101 – super-prime
- 8111 – Sophie Germain prime
- 8117 – super-prime, balanced prime
- 8119 – octahedral number[2]
- 8125 – pentagonal pyramidal number[3]
- 8128 – perfect number, harmonic divisor number, 127th triangular number, 64th hexagonal number, eighth 292-gonal number, fourth 1356-gonal number
- 8147 – safe prime
- 8189 – highly cototient number
- 8190 – harmonic divisor number
- 8191 – Mersenne prime
- 8192 – power of two
- 8208 – base 10 narcissistic number as 84 + 24 + 04 + 84 = 8208[4]
- 8221 – super-prime, twin prime
- 8233 – super-prime, centered heptagonal number
- 8243 – Sophie Germain prime
- 8256 – triangular number
- 8257 – sum of the squares of the first fourteen primes
- 8269 – cuban prime of the form x = y + 1[5]
- 8273 – Sophie Germain prime
- 8281 – 912, sum of the cubes of the first thirteen integers, nonagonal number, centered octagonal number
- 8287 – super-prime
- 8317 – prime of the form 2p-1
- 8321 – super-Poulet number[6]
- 8326 – decagonal number[7]
- 8361 – Leyland number[8]
- 8377 – super-prime
- 8385 – triangular number
- 8389 – super-prime, twin prime
- 8423 – safe prime
- 8436 – tetrahedral number[9]
- 8461 – prime of the form 2p-1
- 8464 – 922
- 8513 – Sophie Germain prime, super-prime
- 8515 – triangular number
- 8521 – prime of the form 2p-1
- 8527 – super-prime, sexy prime with 8521
- 8543 – safe prime
- 8555 – square pyramidal number[10]
- 8576 – centered heptagonal number
- 8581 – super-prime
- 8625 – enneagonal number
- 8646 – triangular number
- 8649 – 932, centered octagonal number
- 8663 – Sophie Germain prime
- 8693 – Sophie Germain prime
- 8695 – decagonal number
- 8699 – safe prime
- 8712 – smallest number that is divisible by its reverse: 8712 = 4 × 2178 (excluding palindromes and numbers with trailing zeros)
- 8713 – balanced prime
- 8719 – super-prime
- 8741 – Sophie Germain prime
- 8747 – safe prime, balanced prime, super-prime
- 8751 – perfect totient number[11]
- 8760 - the number of hours in a non-leap year; 365 × 24
- 8761 – super-prime
- 8778 – triangular number
- 8783 – safe prime
- 8784 - the number of hours in a leap year; 366 × 24
- 8801 – magic constant of n × n normal magic square and n-Queens Problem for n = 26.
- 8807 – super-prime, sum of eleven consecutive primes (761 + 769 + 773 + 787 + 797 + 809 + 811 + 821 + 823 + 827 + 829)
- 8819 – safe prime
- 8833 – 882 + 332
- 8836 – 942
- 8839 – sum of twenty-three consecutive primes (313 + 317 + 331 + 337 + 347 + 349 + 353 + 359 + 367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419 + 421 + 431 + 433 + 439 + 443 + 449)
- 8849 – super-prime
- 8855 – member of a Ruth-Aaron pair (first definition) with 8856
- 8856 – member of a Ruth-Aaron pair (first definition) with 8855
- 8911 – Carmichael number,[12] triangular number
- 8923 – super-prime
- 8926 – centered heptagonal number
- 8944 – sum of the cubes of the first seven primes
- 8951 – Sophie Germain prime
- 8963 – safe prime
- 8969 – Sophie Germain prime
- 8976 – enneagonal number
- 8999 – super-prime
References
- ↑ Voiland, Adam (16 December 2013). "The Eight-Thousanders". The Earth Observatory. NASA. Retrieved 12 September 2016.
- ↑ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A005188 : Armstrong (or Plus Perfect, or narcissistic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A000330 : Square pyramidal numbers". The On-LIne Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.