Truncated tetrahexagonal tiling

Truncated tetrahexagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration4.8.12
Schläfli symboltr{6,4} or
Wythoff symbol2 6 4 |
Coxeter diagram or
Symmetry group[6,4], (*642)
DualOrder-4-6 kisrhombille tiling
PropertiesVertex-transitive

In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{6,4}.

Dual tiling

The dual tiling is called an order-4-6 kisrhombille tiling, made as a complete bisection of the order-4 hexagonal tiling, here with triangles shown in alternating colors. This tiling represents the fundamental triangular domains of [6,4] (*642) symmetry.

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-4 hexagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [6,4] symmetry, and 7 with subsymmetry.

Symmetry

Truncated tetrahexagonal tiling with mirror lines in green, red, and blue:
Symmetry diagrams for small index subgroups of [6,4], shown in a hexagonal translational cell within a {6,6} tiling, with a fundamental domain in yellow.

The dual of the tiling represents the fundamental domains of (*642) orbifold symmetry. From [6,4] symmetry, there are 15 small index subgroup by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images unique mirrors are colored red, green, and blue, and alternatedly colored triangles show the location of gyration points. The [6+,4+], (32×) subgroup has narrow lines representing glide reflections. The subgroup index-8 group, [1+,6,1+,4,1+] (3232) is the commutator subgroup of [6,4].

Larger subgroup constructed as [6,4*], removing the gyration points of [6,4+], (3*22), index 6 becomes (*3333), and [6*,4], removing the gyration points of [6+,4], (2*33), index 12 as (*222222). Finally their direct subgroups [6,4*]+, [6*,4]+, subgroup indices 12 and 24 respectively, can be given in orbifold notation as (3333) and (222222).

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.