6-6 duoprism
Uniform 6-6 duoprism Schlegel diagram | |
---|---|
Type | Uniform duoprism |
Schläfli symbol | {6}×{6} = {6}2 |
Coxeter diagrams | |
Cells | 12 hexagonal prisms |
Faces | 36 squares, 12 hexagons |
Edges | 72 |
Vertices | 36 |
Vertex figure | Tetragonal disphenoid |
Symmetry | 6,2,6 = [12,2+,12], order 288 |
Dual | 6-6 duopyramid |
Properties | convex, vertex-uniform, facet-transitive |
In geometry of 4 dimensions, a 6-6 duoprism or hexagonal duoprism is a polygonal duoprism, a 4-polytope resulting from the Cartesian product of two octagons.
It has 36 vertices, 72 edges, 48 faces (36 squares, and 12 hexagons), in 12 hexagonal prism cells. It has Coxeter diagram , and symmetry 6,2,6, order 288.
Images
Net
Seen in a skew 2D orthogonal projection, it contains the projected rhombi of the rhombic tiling.
6-6 duoprism | Rhombic tiling |
---|---|
6-6 duoprism | 6-6 duoprism |
Related complex polygons
The regular complex polytope 6{4}2, , in has a real representation as a 6-6 duoprism in 4-dimensional space. 6{4}2 has 36 vertices, and 12 6-edges. Its symmetry is 6[4]2, order 72. It also has a lower symmetry construction, , or 6{}×6{}, with symmetry 6[2]6, order 36. This is the symmetry if the red and blue 6-edges are considered distinct.[1]
6-6 duopyramid
6-6 duopyramid | |
---|---|
Type | Uniform dual duopyramid |
Schläfli symbol | {6}+{6} = 2{6} |
Coxeter diagrams | |
Cells | 36 tetragonal disphenoids |
Faces | 72 isosceles triangles |
Edges | 48 (36+12) |
Vertices | 12 (6+6) |
Symmetry | 6,2,6 = [12,2+,12], order 288 |
Dual | 6-6 duoprism |
Properties | convex, vertex-uniform, facet-transitive |
The dual of a 6-6 duoprism is called a 6-6 duopyramid or hexagonal duopyramid. It has 36 tetragonal disphenoid cells, 72 triangular faces, 48 edges, and 12 vertices.
It can be seen in orthogonal projection:
Skew | [6] | [12] |
---|
Related complex polygon
The regular complex polygon 2{4}6 or has 12 vertices in with a real represention in matching the same vertex arrangement of the 6-6 duopyramid. It has 36 2-edges corresponding to the connecting edges of the 6-6 duopyramid, while the 12 edges connecting the two hexagons are not included.
The vertices and edges makes a complete bipartite graph with each vertex from one pentagon is connected to every vertex on the other.[2]
See also
- 3-3 duoprism
- 3-4 duoprism
- 5-5 duoprism
- Tesseract (4-4 duoprism)
- Convex regular 4-polytope
- Duocylinder
Notes
- ↑ Coxeter, H. S. M.; Regular Complex Polytopes, Cambridge University Press, (1974).
- ↑ Regular Complex Polytopes, p.114
References
- Regular Polytopes, H. S. M. Coxeter, Dover Publications, Inc., 1973, New York, p. 124.
- Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues)
- Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- Olshevsky, George. "Duoprism". Glossary for Hyperspace. Archived from the original on 4 February 2007.
External links
- The Fourth Dimension Simply Explained—describes duoprisms as "double prisms" and duocylinders as "double cylinders"
- Polygloss - glossary of higher-dimensional terms
- Exploring Hyperspace with the Geometric Product