5ESS Switching System
The 5ESS Switching System is a Class 5 telephone electronic switching system developed by Western Electric for the American Telephone and Telegraph Company (AT&T) and the Bell System in the United States.
History
The 5ESS came to market as the Western Electric No. 5 ESS. It first commenced service in Seneca, Illinois on 25 March 1982, and was destined to replace the Number One Electronic Switching System (1ESS and 1AESS) and other electromechanical systems in the 1980s and 1990s. The 5ESS was also used as a Class 4 telephone switch or as a hybrid Class 4/Class 5 switch in markets too small for the 4ESS. Approximately half of all US central offices are served by 5ESS switches. The 5ESS is also exported internationally, and manufactured outside the US under license.
The development effort for 5ESS required five thousand employees, producing 100 million lines of system source code, with 100 million lines of header files and makefiles. Evolution of the system took place over 20 years, while three releases were often being developed simultaneously, each taking about three years to develop.
The 5ESS-2000 version, introduced in the 1990s, increased the capacity of the switching module (SM), with more peripheral modules and more optical links per SM to the communications module (CM). A follow-on version, the 5ESS-R/E, was in development during the late 1990s but did not reach market. Another version was the 5E-XC.
The 5ESS technology was transferred to the AT&T Network Systems division upon the breakup of the Bell System. The division was divested by AT&T as Lucent Technologies, and after becoming Alcatel-Lucent, it was acquired by Nokia.
Architecture
The 5ESS switch has three main types of modules: the Administrative Module (AM) contains the central computers; the Communications Module (CM) is the central time-divided switch of the system; and the Switching Module (SM) makes up the majority of the equipment in most exchanges. The SM performs multiplexing, analog and digital coding, and other work to interface with external equipment. Each has a controller, a small computer with duplicated CPUs and memories, like most common equipment of the exchange, for redundancy. Distributed systems lessen the load on the Central Administrative Module (AM) or main computer.
Power for all circuitry is distributed as –48 VDC (nominal), and converted locally to logic levels or telephone signals.
Switching Module
Each Switching Module (SM) handles several hundred to a few thousand telephone lines or several hundred trunks or combination thereof. Each has its own processors, also called Module Controllers, which perform most call handling processes, using their own memory boards. Originally the peripheral processors were to be Intel 8086, but those proved inadequate and the system was introduced with Motorola 68000 series processors. The name of the cabinet that houses this equipment was changed at the same time from Interface Module to Switching Module.
Peripheral units are on shelves in the SM. In most exchanges the majority are Line Units (LU) and Digital Line Trunk Units (DLTU). Each SM has Local Digital Service Units (LDSU) to provide various services to lines and trunks in the SM, including tone generation and detection. Global Digital Service Units (GDSU) provide less-frequently used services to the entire exchange. The Time Slot Interchanger (TSI) in the SM uses random-access memory to delay each speech sample to fit into a time slot which will carry its call through the exchange to another or, in some cases, the same SM.
T-carrier spans are terminated, originally one per card but in later models usually two, in Digital Line Trunk Units (DLTU) which concentrate their DS0 channels into the TSI. These may serve either interoffice trunks or, using Integrated Subscriber Loop Carrier, subscriber lines. Higher-capacity DS3 signals can also have their DS0 signals switched in Digital Network Unit SONET (DNUS) units, without demultiplexing them into DS1. Newer SM's have DNUS (DS3) and Optical OIU interfaces (OC12) with a large amount of capacity.
SMs have Dual Link Interface (DLI) cards to connect them by multi-mode optical fibers to the Communications Modules for time-divided switching to other SMs. These links may be short, for example within the same building, or may connect to SMs in remote locations. Calls among the lines and trunks of a particular SM needn't go through CM, and an SM located remotely can act as distributed switching, administered from the central AM. Each SM has two Module Controller/Time Slot Interchange (MCTSI) circuits for redundancy.
In contrast to Nortel's DMS-100 which uses individual line cards with a codec, most lines are on two-stage analog space-division concentrators or Line Units, which connect as many as 512 lines, as needed, to the 8 Channel cards that each contain 8 codecs, and to high-level service circuits for ringing and testing. Both stages of concentration are included on the same GDX (Gated Diode Access) board. Each GDX board serves 32 lines, 16 A links and 32 B links. Limited availability saves money with incompletely filled matrixes. The Line Unit can have up to 16 GDX boards connecting to the channel boards by shared B links, but in offices with heavier traffic for lines a lesser number of GDX boards are equipped.
ISDN lines are served by individual line cards in an ISLU (Integrated Services Line Unit).
Administrative Module
The Administrative Module (AM) is a dual-processor mini main frame computer of the AT&T 3B series, running UNIX-RTR. AM contains the hard drives and tape drives used to load and backup the central and peripheral processor software and translations. Disk drives were originally several 300 megabyte SMD multiplatter units in a separate frame. Now they consist of several redundant multi-gigabyte SCSI drives that each reside on a card. Tape drives were originally half inch open reel at 6250 bits per inch, which were replaced in the early 1990s with 4 mm Digital Audio Tape cassettes.
The Administrative Module is built on the 3B21D platform and is used to load software to the many microprocessors throughout the switch and to provide high speed control functions. It provides messaging and interface to control terminals. The AM of a 5ESS consists of the 3B20x or 3B21D processor unit, including I/O, disks, and tape drive units. Once the 3B21D has loaded the software into the 5ESS and the switch is activated, packet switching takes place without further action by the 3B21D. Because the processor has duplex hardware, one active side, and one standby side, a failure of one side of the processor will not necessarily result in a loss of switching.
Communication Module
The Communications Module (CM) forms the central time switch of the exchange. 5ESS uses a time-space-time (TST) topology in which the Time-Slot-Interchangers (TSI) in the Switching Modules assign each phone call to a time slot for routing through the CM.
CMs perform time-divided switching and are provided in pairs; each module (cabinet) belonging to Office Network and Timing Complex (ONTC) 0 or 1, roughly corresponding to the switch planes of other designs. Each SM has four optical fiber links, two connecting to a CM belonging to ONTC 0 and two to ONTC 1. Each optical link consists of two multimode optical fibers with ST connectors to plug into transceivers plugged into backplane wiring at each end. CMs receive time-multiplexed signals on the receive fiber and send them to the appropriate destination SM on the send fiber.
Very Compact Digital Exchange
The Very Compact Digital Exchange (VCDX) was developed with the 5ESS-2000, and marketed to mostly non-Bell telephone companies as an inexpensive, effective way to offer ISDN and other digital services in an analog switching center. This avoided the capital expense of retrofitting the entire analog switch into a digital one to serve all of the switch's lines when many wouldn't require it and would remain POTS lines.
An example would be the (former) GTE/Verizon Class-5 telephone switch, the GTD-5 EAX. Like the Western Electric 1ESS/1AESS, it served mostly medium to large wire centers.
The standalone VCDX was also capable of serving as a switch for very small wire centers (a CDX- Community dial office) of fewer than ~400 lines. However, for small wire centers, 400-4000 lines, that function was usually served by RSM's, a 5ESS "Remote SM". The RSM is controlled over redundant and diverse fiber optic "umbilicals". An RSM can have more than one SM, and also many other peripheral units that are part of a full 5ESS switch. An RSM can serve parts of a larger metro area, but is more often used as a Class-5 wire center for small to medium towns hosted from a 5ESS located in a larger city. The VCDX was also used as a large private branch exchange (PBX).
The standalone VCDX has a single Switching Module, and no Communications Module. Its Sun Microsystems SPARC workstation runs the UNIX-based Solaris (operating system) that executes a 3B20/21D processor MERT OS emulation system, acting as the VCDX's Administrative Module. The VCDX uses the CO's normal telephone power sources (which are very large uninterruptible power supply's), and has connections to the CO Digital cross connect system for T1 access, etc.
Signaling
The 5ESS has two different signaling architectures: Common Network Interface (CNI) Ring and Packet Switching Unit (PSU)-based SS7 Signaling.
OAMP
The system is administered through an assortment of teletypewriter "Channels", also called the system console, such as the TEST channel and Maintenance channel. Typically provisioning is done either through a command line interface (CLI) called RCV:APPTEXT, or through the menu-driven RCV:MENU,APPRC program. RCV stands for Recent Change/Verification, and can be accessed through Switching Control Center System. Most service orders, however, are administered through Recent Change Memory Administration Center (RCMAC). In the international market, this terminal interface has localization to provide locale specific language and command name variations on the screen and printer output.
See also
References
- The 5ESS Switching System (The AT&T Technical Journal, July–August 1985, Vol. 64, No. 6, Part 2)
External links
- Evolution of Switching Architecture to Support Voice Telephony over ATM by Judith R. McGoogan, Joseph E. Merritt, and Yogesh J. Dave. Extending 5ESS-2000. Bell Labs Technical Journal, April–May 2000
- Switch Basics 5ESS Scribd.com