58 (number)

57 58 59
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinal fifty-eight
Ordinal 58th
(fifty-eighth)
Factorization 2 × 29
Divisors 1, 2, 29, 58
Roman numeral LVIII
Binary 1110102
Ternary 20113
Quaternary 3224
Quinary 2135
Senary 1346
Octal 728
Duodecimal 4A12
Hexadecimal 3A16
Vigesimal 2I20
Base 36 1M36

58 (fifty-eight) is the natural number following 57 and preceding 59.

In mathematics

Fifty-eight is the sum of the first seven prime numbers, an 11-gonal number,[1] and a Smith number.[2] Given 58, the Mertens function returns 0.[3]

There is no solution to the equation xφ(x) = 58, making 58 a noncototient.[4] However, the sum of the totient function for the first thirteen integers is 58.

58 is the only positive integer whose square is 11 less than a perfect cube (582 = 153 - 11).

In science

Astronomy

In music

In sports

In the NBA, the most points ever scored in a fourth quarter was 58 by the Buffalo Braves (at Boston Celtics), Oct. 20, 1972. The most points in a game by a rookie player: Wilt Chamberlain, 58: Philadelphia vs. Detroit, Jan. 25, 1960, and Philadelphia vs. New York Knicks, Feb. 21, 1960.

In MotoGP, 58 was the number of Marco Simoncelli who died in an accident at the Malaysian Round of the 2011 MotoGP season. MotoGP's governing body, the FIM, are considering to retire number 58 from use in MotoGP as they did before with the numbers 74 and 48 of Daijiro Kato and Shoya Tomizawa, respectively. The retirement, from all motorcycle racing classes, eventually occurred in 2016, joining Kato's 74, the 34 of inaugural MotoGP champion Kevin Schwantz and the 65 of Loris Capirossi.

On the PGA Tour, 58 is the lowest score in an 18 hole round, achieved by Jim Furyk in the final round of the 2016 Travelers Championship at TPC River Highlands.

In Formula One, 58 is the number of laps of the Australian Grand Prix since 1996, when the Grand Prix held in Albert Park.

In mythology

The number 58 was commonly associated with misfortune in many civilizations native to either Central America or Southern America. Due to their beliefs in the original 58 sins, the number came to symbolize curses and ill-luck. Aztec oracles supposedly stumbled across the number an unnaturally high number of times before disaster fell. One famous recording of this, though largely discredited as mere folktale, concerned the oracle of Moctezuma II, who allegedly counted 58 pieces of gold scattered before a sacrificial pit the day prior to the arrival of Hernán Cortés.

In other fields

References

  1. "Sloane's A051682 : 11-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  2. "Sloane's A006753 : Smith numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  3. "Sloane's A028442 : Numbers n such that Mertens' function is zero". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  4. "Sloane's A005278 : Noncototients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.