5000 (number)
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | five thousand | |||
Ordinal |
5000th (five thousandth) | |||
Factorization | 23× 54 | |||
Roman numeral | V | |||
Unicode symbol(s) | V, v, ↁ | |||
Binary | 10011100010002 | |||
Ternary | 202120123 | |||
Quaternary | 10320204 | |||
Quinary | 1300005 | |||
Senary | 350526 | |||
Octal | 116108 | |||
Duodecimal | 2A8812 | |||
Hexadecimal | 138816 | |||
Vigesimal | CA020 | |||
Base 36 | 3UW36 |
5000 (five thousand) is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic number in the English language.
Look up five thousand in Wiktionary, the free dictionary. |
Selected numbers in the range 5001–5999
- 5003 – Sophie Germain prime
- 5020 – amicable number with 5564
- 5021 – super-prime, twin prime
- 5039 – factorial prime,[1] Sophie Germain prime
- 5040 – 7!, superior highly composite number
- 5041 – 712, centered octagonal number[2]
- 5050 – triangular number, Kaprekar number,[3] sum of first 100 integers
- 5051 – Sophie Germain prime
- 5059 – super-prime
- 5076 – decagonal number[4]
- 5081 – Sophie Germain prime
- 5087 – safe prime
- 5099 – safe prime
- 5107 – super-prime, balanced prime[5]
- 5113 – balanced prime[5]
- 5117 - sum of the first 50 primes
- 5151 – triangular number
- 5167 – cuban prime of the form x = y + 1[6]
- 5171 – Sophie Germain prime
- 5184 – 722
- 5186 – φ(5186) = 2592
- 5187 – φ(5187) = 2592
- 5188 – φ(5189) = 2592, centered heptagonal number[7]
- 5189 – super-prime
- 5226 – nonagonal number[8]
- 5231 – Sophie Germain prime
- 5244 – 222 + 232 + … + 292 = 202 + 212 + … + 282
- 5249 – highly cototient number[9]
- 5253 – triangular number
- 5279 – Sophie Germain prime, 700th prime number
- 5280 is the number of feet in a mile. It is divisible by three, yielding exactly 1760 yards per mile and by 16.5, yielding exactly 320 rods per mile.
- 5280 is connected with both Klein's J-invariant and the Heegner numbers. Specifically
- 5281 – super-prime, twin prime
- 5292 – Kaprekar number[3]
- 5303 – Sophie Germain prime, balanced prime[5]
- 5329 – 732, centered octagonal number[2]
- 5333 – Sophie Germain prime
- 5335 – magic constant of n × n normal magic square and n-queens problem for n = 22.
- 5340 – octahedral number[10]
- 5356 – triangular number
- 5365 – decagonal number[4]
- 5381 – super-prime
- 5387 – safe prime, balanced prime[5]
- 5392 – Leyland number[11]
- 5393 – balanced prime[5]
- 5399 – Sophie Germain prime, safe prime
- 5405 – member of a Ruth–Aaron pair with 5406 (either definition)
- 5406 – member of a Ruth–Aaron pair with 5405 (either definition)
- 5419 – Cuban prime of the form x = y + 1[6]
- 5441 – Sophie Germain prime, super-prime
- 5456 – tetrahedral number[12]
- 5459 – highly cototient number[9]
- 5460 – triangular number
- 5461 – super-Poulet number,[13] centered heptagonal number[7]
- 5476 – 742
- 5483 – safe prime
- 5500 – nonagonal number[8]
- 5501 – Sophie Germain prime
- 5503 – super-prime, twin prime with 5501, cousin prime with 5507
- 5507 – safe prime
- 5525 – square pyramidal number[14]
- 5527 – happy number
- 5536 – tetranacci number[15]
- 5557 – super prime
- 5563 – balanced prime
- 5564 – amicable number with 5020
- 5565 – triangular number
- 5566 – pentagonal pyramidal number[16]
- 5569 – happy number
- 5571 – perfect totient number[17]
- 5581 – prime of the form 2p-1
- 5623 – super-prime
- 5625 – 752, centered octagonal number[2]
- 5639 – Sophie Germain prime, safe prime
- 5651 – super-prime
- 5659 – happy number, completes the eleventh prime quadruplet set
- 5662 – decagonal number[4]
- 5671 – triangular number
- 5701 – super-prime
- 5711 – Sophie Germain prime
- 5719 – Zeisel number,[18] Lucas–Carmichael number[19]
- 5741 – Sophie Germain prime, Pell number,[20] Markov number,[21] centered heptagonal number[7]
- 5749 – super-prime
- 5768 – tribonacci number[22]
- 5776 – 762
- 5777 – smallest counterexample to the conjecture that all odd numbers are of the form p + 2a2
- 5778 – triangular number
- 5781 – nonagonal number[8]
- 5798 – Motzkin number[23]
- 5801 – super-prime
- 5807 – safe prime, balanced prime
- 5832 – 183
- 5842 – member of the Padovan sequence[24]
- 5849 – Sophie Germain prime
- 5869 – super-prime
- 5879 – safe prime, highly cototient number[9]
- 5886 – triangular number
- 5903 – Sophie Germain prime
- 5913 – sum of the first seven factorials
- 5927 – safe prime
- 5929 – 772, centered octagonal number[2]
- 5939 – safe prime
- 5967 – decagonal number[4]
- 5984 – tetrahedral number[12]
- 5995 – triangular number
- 5647 – prime number
References
- ↑ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 5 "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A006972 : Lucas-Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.