3000 (number)
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | three thousand | |||
Ordinal |
3000th (three thousandth) | |||
Factorization | 23× 3 × 53 | |||
Roman numeral | MMM | |||
Unicode symbol(s) | MMM, mmm | |||
Binary | 1011101110002 | |||
Ternary | 110100103 | |||
Quaternary | 2323204 | |||
Quinary | 440005 | |||
Senary | 215206 | |||
Octal | 56708 | |||
Duodecimal | 18A012 | |||
Hexadecimal | BB816 | |||
Vigesimal | 7A020 | |||
Base 36 | 2BC36 |
3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).
In other fields
In the novel The Brothers Karamazov by Fyodor Mikhailovich Dostoevsky, a recurring conflict between Fyodor Pavlovich and his eldest son Dmitri Fyodorovich involves the sum of 3000 roubles.
Mr. 3000 is the title of the 2004 movie starring Bernie Mac.
3000 is sometimes used (often with comical intent) to represent a year in the distant future. For example, the events of the television series Futurama take place in 3000.
The number is also used in the title of the comedy series Mystery Science Theater 3000.
The postal code for the downtown core of Melbourne, Australia.
André 3000 is one of the members of OutKast.
Selected numbers in the range 3001–3999
- 3001 – super-prime
- 3003 – triangular number, only number known to appear eight times in Pascal's triangle; no number is known to appear more than eight times other than 1. (see Singmaster's conjecture)
- 3019 – super-prime, happy number
- 3023 – 84th Sophie Germain prime, 51st safe prime
- 3025 – 552, sum of the cubes of the first ten integers, centered octagonal number,[1] dodecagonal number[2]
- 3037 – star number, cousin prime with 3041
- 3045 – sum of the integers 196 to 210 and sum of the integers 211 to 224
- 3046 – centered heptagonal number[3]
- 3052 – decagonal number[4]
- 3059 – centered cube number[5]
- 3061 – prime of the form 2p-1
- 3063 – perfect totient number[6]
- 3067 - super-prime, prime number mentioned in a question during a quiz in Little Man Tate, where it was asked what its factors were, and the response was that it has none, since it is indeed Prime.
- 3071 – Thabit number
- 3075 – nonagonal number[7]
- 3078 – 18th pentagonal pyramidal number[8]
- 3080 – pronic number
- 3081 – triangular number, 497th sphenic number
- 3087 – sum of first 40 primes
- 3109 – super-prime
- 3119 – safe prime
- 3121 – centered square number[9]
- 3125 – 55
- 3136 – 562, palindromic in base 3 (110220113), tribonacci number[10]
- 3137 – Proth prime,[11] both a left- and right- truncatable prime
- 3149 – highly cototient number[12]
- 3155 – member of the Mian–Chowla sequence[13]
- 3160 – triangular number
- 3167 – safe prime
- 3169 – super-prime, Cuban prime of the form x = y + 1[14]
- 3192 – pronic number
- 3203 – safe prime
- 3229 – super-prime
- 3240 – triangular number
- 3248 – member of a Ruth-Aaron pair with 3249 under second definition, largest number whose factorial is less than 1010000 – hence its factorial is the largest certain advanced computer programs can handle.
- 3249 – 572, palindromic in base 7 (123217), centered octagonal number,[1] member of a Ruth–Aaron pair with 3248 under second definition
- 3253 – sum of eleven consecutive primes (269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331)
- 3256 – centered heptagonal number[3]
- 3259 – super-prime, completes the ninth prime quadruplet set
- 3266 – sum of first 41 primes, 523rd sphenic number
- 3276 – tetrahedral number[15]
- 3277 – 5th super-Poulet number,[16] decagonal number[4]
- 3281 – octahedral number,[17] centered square number[9]
- 3286 – nonagonal number[7]
- 3299 – 85th Sophie Germain prime, super-prime
- 3306 – pronic number
- 3307 – balanced prime[18]
- 3313 – balanced prime, star number[18]
- 3319 – super-prime, happy number
- 3321 – triangular number
- 3329 – 86th Sophie Germain prime, Proth prime,[11] member of the Padovan sequence[19]
- 3354 – member of the Mian–Chowla sequence[13]
- 3358 – sum of the squares of the first eleven primes
- 3359 – 87th Sophie Germain prime, highly cototient number[12]
- 3364 – 582
- 3375 – 153, palindromic in base 14 (133114), 15th cube
- 3389 – 88th Sophie Germain prime
- 3403 – triangular number
- 3407 – super-prime
- 3413 – 89th Sophie Germain prime, sum of the first 5 nn: 3413 = 11 + 22 + 33 + 44 + 55
- 3422 – pronic number, 553rd sphenic number, melting point of tungsten in degrees Celsius
- 3435 – a perfect digit-to-digit invariant, equal to the sum of its digits to their own powers (33 + 44 + 33 + 55 = 3435)
- 3439 – magic constant of n×n normal magic square and n-queens problem for n = 19.
- 3445 – centered square number[9]
- 3447 – sum of first 42 primes
- 3449 – 90th Sophie Germain prime
- 3457 – Proth prime[11]
- 3463 – Happy number
- 3467 – safe prime
- 3469 – super-prime, Cuban prime of the form x = y + 2, completes the tenth prime quadruplet set[20]
- 3473 – centered heptagonal number[3]
- 3481 – 592, centered octagonal number[1]
- 3486 – triangular number
- 3491 – 91st Sophie Germain prime
- 3504 – nonagonal number[7]
- 3510 – decagonal number[4]
- 3511 – largest known Wieferich prime
- 3517 – super-prime, sum of nine consecutive primes (367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419)
- 3539 – 92nd Sophie Germain prime
- 3540 – pronic number
- 3559 – super-prime
- 3569 – highly cototient number[12]
- 3570 – triangular number
- 3571 – 500th prime, Cuban prime of the form x = y + 1,[14] 17th Lucas number,[21] 4th balanced prime of order 4.[22]
- 3591 – member of the Mian–Chowla sequence[13]
- 3593 – 93rd Sophie Germain prime, super-prime
- 3600 – 602, number of seconds in an hour, called šār or šāru in the sexagesimal system of Ancient Mesopotamia (cf. Saros), 1201-gonal number
- 3601 – star number
- 3610 – 19th pentagonal pyramidal number[8]
- 3613 – centered square number[9]
- 3617 – sum of eleven consecutive primes (293 + 307 + 311 + 313 + 317 + 331 + 337 + 347 + 349 + 353 + 359)
- 3623 – 94th Sophie Germain prime, safe prime
- 3637 – balanced prime, super-prime[18]
- 3643 – Happy number, sum of seven consecutive primes (499 + 503 + 509 + 521 + 523 +541 + 547)
- 3638 – sum of first 43 primes, 599th sphenic number
- 3654 – tetrahedral number[15]
- 3655 – triangular number, 601st sphenic number
- 3660 – pronic number
- 3684 – 13th Keith number[23]
- 3697 – centered heptagonal number[3]
- 3721 – 612, centered octagonal number[1]
- 3729 – nonagonal number[7]
- 3733 – balanced prime, super-prime[18]
- 3741 – triangular number, 618th sphenic number
- 3751 – decagonal number[4]
- 3761 – 95th Sophie Germain prime, super-prime
- 3779 – 96th Sophie Germain prime, safe prime
- 3782 – pronic number, 623rd sphenic number
- 3785 – centered square number[9]
- 3797 – member of the Mian–Chowla sequence,[13] both a left- and right- truncatable prime
- 3803 – 97th Sophie Germain prime, safe prime
- 3821 – 98th Sophie Germain prime
- 3828 – triangular number
- 3831 – sum of first 44 primes
- 3844 – 622
- 3851 – 99th Sophie Germain prime
- 3863 – 100th Sophie Germain prime
- 3865 – greater of third pair of Smith brothers
- 3888 – longest number when expressed in Roman numerals I, V, X, L, C, D, and M (MMMDCCCLXXXVIII)
- 3889 – Cuban prime of the form x = y + 2[20]
- 3894 – octahedral number[17]
- 3901 – star number
- 3906 – pronic number
- 3911 – 101st Sophie Germain prime, super-prime
- 3916 – triangular number
- 3925 – centered cube number[5]
- 3926 – 12th open meandric number, 654th sphenic number
- 3928 – centered heptagonal number[3]
- 3940 – there are 3940 distinct ways to arrange the 12 flat pentacubes (or 3-D pentominoes) into a 3x4x5 box (not counting rotations and reflections)
- 3943 – super-prime
- 3947 – safe prime
- 3961 – nonagonal number,[7] centered square number[9]
- 3967 – Carol number[24]
- 3969 – 632, centered octagonal number[1]
- 3989 – highly cototient number[12]
- 3998 – member of the Mian–Chowla sequence[13]
- 3999 – largest number properly expressible using Roman numerals I, V, X, L, C, D, and M (MMMCMXCIX), ignoring vinculum
References
- 1 2 3 4 5 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A051624 : 12-gonal (or dodecagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 5 "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 5 "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 5 6 "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 5 "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- 1 2 3 4 "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- 1 2 "Sloane's A002648 : A variant of the cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A000032 : Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A082079 : Balanced primes of order four". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ↑ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.