225 (number)
225 (two hundred [and] twenty-five) is the natural number following 224 and preceding 226.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | two hundred twenty-five | |||
Ordinal |
225th (two hundred twenty-fifth) | |||
Factorization | 32× 52 | |||
Prime | no | |||
Roman numeral | CCXXV | |||
Binary | 111000012 | |||
Ternary | 221003 | |||
Quaternary | 32014 | |||
Quinary | 14005 | |||
Senary | 10136 | |||
Octal | 3418 | |||
Duodecimal | 16912 | |||
Hexadecimal | E116 | |||
Vigesimal | B520 | |||
Base 36 | 6936 |
225 is the smallest number that is a polygonal number in five different ways.[1] It is a square number (225 = 152),[2] an octagonal number,[3] and a squared triangular number (225 = (1 + 2 + 3 + 4 + 5)2 = 13 + 23 + 33 + 43 + 53) .[4]
As the square of a double factorial, 225 = 5!!2 counts the number of permutations of six items in which all cycles have even length, or the number of permutations in which all cycles have odd length.[5] And as one of the Stirling numbers of the first kind, it counts the number of permutations of six items with exactly three cycles.[6]
225 is a highly composite odd number, meaning that it has more divisors than any smaller odd numbers.[7] After 1 and 9, 225 is the third smallest number n for which σ(φ(n)) = φ(σ(n)), where σ is the sum of divisors function and φ is Euler's totient function.[8] 225 is a refactorable number.[9]
225 is the smallest square number to have one of every digit in some number base (225 is 3201 in base 4) [10]
In other fields
- The years 225 and 225 BC
- .225 Winchester, firearm cartridge
References
- ↑ "Sloane's A063778 : a(n) = the least integer that is polygonal in exactly n ways". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A000290 : The squares". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A000567 : Octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A000537 : Sum of first n cubes; or n-th triangular number squared". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A001818 : Squares of double factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A000399 : Unsigned Stirling numbers of first kind s(n,3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A053624 : Highly composite odd numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A033632". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A033950 : Refactorable numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-04-18. Retrieved 2016-04-18.
- ↑ "Sloane's A061845 : Numbers which have one of every digit in some base". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.