2017 in paleontology
| |||
---|---|---|---|
| |||
Paleontology or palaeontology (from Greek: paleo, "ancient"; ontos, "being"; and logos, "knowledge") is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2017.
Plants
Cnidarians
Research
- Ou et al. (2017) consider early Cambrian species Galeaplumosus abilus and Chengjiangopenna wangii to be junior synonyms of Xianguangia sinica, interpret fossils attributed to members of these species as parts of the same organism and consider X. sinica to be likely stem-cnidarian.[2]
- Fossilized cnidarian medusae are described from the Cambrian Zabriskie Quartzite (California, United States) by Sappenfield, Tarhan & Droser (2017), representing the oldest macrofossil evidence of cnidarian medusae from the Phanerozoic reported so far.[3]
- A study on the morphology of the conulariid species Carinachites spinatus based on a new specimen collected from the lower Cambrian Kuanchuanpu Formation (China) is published by Han et al. (2017).[4]
- A study on the morphology of phosphatic tubes of Sphenothallus from the Early Ordovician Fenxiang Formation (China), as well as the Silurian and Early Devonian of Podolia (Ukraine), and its implications for the evolution of symmetry in the body plan of cnidarians is published by Dzik, Baliński & Sun (2017).[5]
- A study on the succession of coral assemblages through the Ordovician–Silurian transition in South China is published by Wang et al. (2017).[6]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Agetolites angullongensis[7] |
Sp. nov |
Valid |
Zhen, Wang & Percival |
Late Ordovician |
Angullong Formation |
|||
Bothrophyllum gorbachevensis[8] |
Sp. nov |
Valid |
Fedorowski |
|||||
Bothrophyllum kalmyussi[8] |
Sp. nov |
Valid |
Fedorowski |
|||||
Cambroctoconus koori[9] |
Sp. nov |
In press |
Peel |
A possible member of Octocorallia. |
||||
Dianqianophyllum[10] |
Gen. et sp. nov |
Valid |
Liao & Ma |
Devonian (Givetian) |
||||
Fungiaphyllia[11] |
Gen. et sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian–Pliensbachian) |
A stony coral belonging to the family Latomeandridae. The type species is Fungiaphyllia communis. |
|||
Gillismilia[12] |
Nom. nov |
Valid |
Lathuilière, Charbonnier & Pacaud |
A coral; a replacement name for Palaeocyathus Alloiteau (1956). |
||||
Guembelastraea dronovi[11] |
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian) |
A stony coral belonging to the family Tropiastraeidae, a species of Guembelastraea. |
|||
Sp. nov |
Valid |
Rodríguez & Somerville in Rodríguez, Somerville & Said |
Azrou-Khenifra Basin |
|||||
Nina[8] |
Gen. et 3 sp. et comb. nov |
Junior homonym |
Fedorowski |
A rugose coral belonging to the family Bothrophyllidae. The type species is N. donetsiana; genus also includes new species N. dibimitaria and N. magna, as well as "Bothrophyllum" berestovensis Vassilyuk (1960). The generic name is preoccupied by Nina Horsfield (1829). |
||||
Oppelismilia spectabilis[11] |
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian) |
A stony coral belonging to the family Oppelismiliidae, a species of Oppelismilia. |
|||
Parepismilia dolichostoma[11] |
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian–early Sinemurian) |
A stony coral belonging to the family Parepismiliidae, a species of Parepismilia. |
|||
Parepismilia dronovi[11] |
Sp. nov |
Valid |
Melnikova & Roniewicz |
Early Jurassic (Hettangian/Sinemurian) |
A stony coral belonging to the family Parepismiliidae, a species of Parepismilia. |
|||
Periplacotrochus[14] |
Gen. et comb. et sp. nov |
Valid |
Cairns |
A flabellid coral. Genus includes P. deltoideus (Duncan, 1864), P. corniculatus (Dennant, 1899), P. elongatus (Duncan, 1864), P. pueblensis (Dennant, 1903), P. inflectus (Dennant, 1903) and P. magnus (Dennant, 1904), as well as new species P. cudmorei. |
||||
Qinscyphus[15] |
Gen. et sp. nov |
Valid |
Liu et al. |
Kuanchuanpu Formation |
A probable crown jellyfish belonging to the family Olivooidae. The type species is Q. necopinus. |
|||
Scoliopora hosakai[16] |
Sp. nov |
Valid |
Niko, Ibaraki & Tazawa |
Middle Devonian |
A tabulate coral belonging to the order Favositida and the family Alveolitidae. |
|||
Sterictopathes[17] |
Gen. et sp. nov |
Valid |
Baliński & Sun |
Ordovician (early Floian) |
Fenxiang Formation |
A black coral related to Sinopathes reptans. The type species is S. radicatus. |
||
Xystriphylloides distinctus[18] |
Sp. nov |
In press |
Yu |
Early Devonian |
||||
Arthropods
Bryozoans
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Acupipora mexicana[19] |
Sp. nov |
Valid |
Ernst & Vachard |
Carboniferous (middle Pennsylvanian) |
||||
Adeonellopsis sandbergi[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Adeonidae. |
|||
Atactotoechus vaulxensis[21] |
Sp. nov |
Valid |
Ernst et al. |
A bryozoan. |
||||
Bashkirella arnaoense[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Chasmatoporidae. |
|||
Bigeyina cantabrica[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||
Bigeyina spinosa[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||
Bragella[23] |
Gen. et sp. nov |
Valid |
Di Martino et al. |
A cheilostome bryozoan. Genus includes new species B. pseudofedora. |
||||
Cheiloporina clarksvillensis[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cheiloporinidae. |
|||
Cigclisula solenoides[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Colatooeciidae. |
|||
Coeloclemis zefrehensis[24] |
Sp. nov |
In press |
Ernst et al. |
Devonian (Frasnian) |
Bahram Formation |
|||
Diplosolen akatjevense[25] |
Sp. nov |
Valid |
Viskova & Pakhnevich |
A bryozoan belonging to the class Stenolaemata and the order Tubuliporida. |
||||
Ditaxipora lakriensis[26] |
Sp. nov |
Valid |
Sonar & Pawar |
Chhasra Formation |
A member of the family Catenicellidae. |
|||
Eridopora moravica[27] |
Sp. nov |
In press |
Tolokonnikova, Kalvoda & Kumpan |
|||||
Escharoides joannae[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Romancheinidae. |
|||
Euthyrhombopora tenuis[24] |
Sp. nov |
In press |
Ernst et al. |
Devonian (Frasnian) |
Bahram Formation |
A rhabdomesine cryptostome bryozoan. |
||
Exechonella minutiperforata[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Exechonellidae. |
|||
Exidmonea baghi[28] |
Sp. nov |
Valid |
Zágoršek, Yazdi & Bahrami |
Miocene |
Qom Formation |
|||
Fabifenestella almazani[19] |
Sp. nov |
Valid |
Ernst & Vachard |
Carboniferous (middle Pennsylvanian) |
||||
Fenestrapora elegans[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||
Filites robustus[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Acanthocladiidae. |
|||
Floridina subantiqua[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Onychocellidae. |
|||
Foratella cervisia[29] |
Sp. nov |
Valid |
Taylor & Martha |
Late Cretaceous (Cenomanian) |
Beer Head Limestone Formation |
|||
Hagiosynodos simplex[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cheiloporinidae. |
|||
Heteractis tanzaniensis[23] |
Sp. nov |
Valid |
Di Martino et al. |
|||||
Kalvariella antiqua[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Acanthocladiidae. |
|||
Lacrimula crassa[23] |
Sp. nov |
Valid |
Di Martino et al. |
|||||
Lacrimula kilwaensis[23] |
Sp. nov |
Valid |
Di Martino et al. |
|||||
Margaretta pentaceratops[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Margarettidae. |
|||
Metrarabdotos aquaeguttum[30] |
Sp. nov |
Valid |
Ramalho, Távora & Zagorsek |
Early Miocene |
Pirabas Formation |
A member of Lepralielloidea belonging to the family Metrarabdotosidae. |
||
Metrarabdotos capanemensis[30] |
Sp. nov |
Valid |
Ramalho, Távora & Zagorsek |
Early Miocene |
Pirabas Formation |
A member of Lepralielloidea belonging to the family Metrarabdotosidae. |
||
Metrarabdotos elongatum[30] |
Sp. nov |
Valid |
Ramalho, Távora & Zagorsek |
Early Miocene |
Pirabas Formation |
A member of Lepralielloidea belonging to the family Metrarabdotosidae. |
||
Microeciella kolomnensis[25] |
Sp. nov |
Valid |
Viskova & Pakhnevich |
A bryozoan belonging to the suborder Tubuliporina and the family Oncousoeciidae. |
||||
Nellia winstonae[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Quadricellariidae. |
|||
Nevianipora isfahani[28] |
Sp. nov |
Valid |
Zágoršek, Yazdi & Bahrami |
Miocene |
Qom Formation |
|||
Paralicornia interdigitata[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Candidae. |
|||
Paraseptopora geometrica[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Septoporidae. |
|||
Paraseptopora irregularis[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Septoporidae. |
|||
Pharopora[31] |
Gen. et sp. nov |
Valid |
Wyse Jackson, Ernst & Suárez Andrés |
A member of Cryptostomata belonging to the family Rhabdomesidae. The type species is P. regularis. |
||||
Pleuromucrum epifanioi[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Phidoloporidae. |
|||
Pleuromucrum liowae[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Phidoloporidae. |
|||
Polyascosoecia iranica[28] |
Sp. nov |
Valid |
Zágoršek, Yazdi & Bahrami |
Miocene |
Qom Formation |
|||
Puellina quadrispinosa[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cribrilinidae. |
|||
Revalotrypa inopinata[32] |
Sp. nov |
In press |
Fedorov, Koromyslova & Martha |
An esthonioporate bryozoan belonging to the family Revalotrypidae. |
||||
Revalotrypa yugaensis[32] |
Sp. nov |
In press |
Fedorov, Koromyslova & Martha |
An esthonioporate bryozoan belonging to the family Revalotrypidae. |
||||
Schizolepraliella[20] |
Gen. et sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A Schizoporella-like cheilostome bryozoan of uncertain phylogenetic placement. The type species is S. nancyae. |
|||
Selenaria lyrulata[33] |
Sp. nov |
In press |
López-Gappa, Pérez & Griffin |
Early Miocene |
Monte León Formation |
A bryozoan belonging to the family Selenariidae. |
||
Spiniflabellum jacksoni[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Cribrilinidae. |
|||
Stylopoma farleyensis[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Schizoporellidae. |
|||
Stylopoma leverhulme[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Schizoporellidae. |
|||
Thalamoporella bitorquata[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
|||
Thalamoporella hastigera[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
|||
Thalamoporella ogivalis[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
|||
Thalamoporella papalis[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
|||
Thalamoporella polygonalis[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Thalamoporellidae. |
|||
Trypostega vokesi[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Trypostegidae. |
|||
Turbicellepora giardinai[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Celleporidae. |
|||
Utropora parva[22] |
Sp. nov |
Valid |
Suárez Andrés & Wyse Jackson |
Moniello Formation |
A member of Fenestrata belonging to the family Semicosciniidae. |
|||
Vix scolaroi[20] |
Sp. nov |
Valid |
Di Martino, Taylor & Portell |
Early Miocene |
A cheilostome bryozoan belonging to the family Vicidae. |
|||
Wilbertopora manubriformis[29] |
Sp. nov |
Valid |
Taylor & Martha |
Late Cretaceous (Cenomanian) |
Beer Head Limestone Formation |
|||
Brachiopods
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Atychorhynchia[34] |
Gen. et sp. nov |
Valid |
Baeza-Carratalá, Reolid & García Joral |
Early Jurassic (late Pliensbachian–early Toarcian) |
Zegrí Formation |
A member of Rhynchonellida belonging to the family Norellidae. The type species is A. falsiorigo. |
||
Avdeevella[35] |
Gen. et sp. nov |
Valid |
Baranov |
The type species is A. mica. |
||||
Bilobia alichovae[36] |
Sp. nov |
Valid |
Madison |
A member of Strophomenida. |
||||
Broggeria omaguaca[37] |
Sp. nov |
In press |
Benedetto, Lavie & Muñoz |
|||||
Bronnothyris danaperensis[38] |
Sp. nov |
Valid |
Bitner & Müller |
A member of Terebratulida belonging to the family Megathyrididae. |
||||
Burrirhynchia albiensis[39] |
Sp. nov |
Valid |
Gaspard |
A member of Rhynchonellida belonging to the family Tetrarhynchiidae. |
||||
Cyrtinaella? houi[40] |
Sp. nov |
In press |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferinida. |
|||
Cyrtiorina houi[41] |
Sp. nov |
In press |
Zong & Ma |
Hongguleleng Formation |
A member of Spiriferida. |
|||
Sp. nov |
Valid |
Tazawa |
Late Devonian |
A member of Spiriferida belonging to the family Cyrtospiriferidae. |
||||
Dirafinesquina antiqua[43] |
Sp. nov |
Valid |
Popov & Cocks |
A strophomenoid brachiopod. |
||||
Discinisca undata[44] |
Sp. nov |
Valid |
Smirnova in Smirnova et al. |
A brachiopod belonging to the family Discinidae, a species of Discinisca. |
||||
Eoporambonites raziabadensis[43] |
Sp. nov |
Valid |
Popov & Cocks |
A porambonitoid brachiopod. |
||||
Foveola ivari[45] |
Sp. nov |
Valid[46] |
Holmer et al. |
A member of Obolidae. |
||||
Gypidula xui[40] |
Sp. nov |
In press |
Lü & Ma |
Devonian (late Frasnian) |
A member of Pentamerida. |
|||
Joania ukrainica[38] |
Sp. nov |
Valid |
Bitner & Müller |
A member of Terebratulida belonging to the family Megathyrididae. |
||||
Karadagithyris boullierae[47] |
Sp. nov |
In press |
Halamski & Cherif |
Argiles de Saïda Formation |
A member of Terebratulida belonging to the family Muirwoodellidae. |
|||
Karlsorus[48] |
Gen. et comb. nov |
In press |
Jin & Holmer |
A new genus for "Pentamerus" gothlandicus Lebedev (1892). |
||||
Koninckodonta sumuntanensis[34] |
Sp. nov |
Valid |
Baeza-Carratalá, Reolid & García Joral |
Early Jurassic (late Pliensbachian–early Toarcian) |
Zegrí Formation |
A member of Athyridida belonging to the family Koninckinidae. |
||
Lacunites ivantsovi[45] |
Sp. nov |
Valid[46] |
Holmer et al. |
Ordovician (early Darriwilian) |
A paterinid brachiopod. |
|||
Lamellaerhynchia carronensis[39] |
Sp. nov |
Valid |
Gaspard |
A member of Rhynchonellida belonging to the family Cyclothyrididae. |
||||
Leptagonia franca[49] |
Sp. nov |
Valid |
Mottequin & Simon |
Tournai Formation |
A member of Strophomenoidea belonging to the family Rafinesquinidae. |
|||
Levipugnax? liui[40] |
Sp. nov |
In press |
Lü & Ma |
Devonian (late Frasnian) |
A member of Rhynchonellida. |
|||
Lichuanorelloides[50] |
Gen. et sp. nov |
Valid |
Wang et al. |
Genus includes new species L. lichuanensis. |
||||
Sp. nov |
Valid |
Modzalevskaya et al. |
Devonian (Lochkovian) |
|||||
Sp. nov |
Valid |
Mao et al. |
Cambrian |
Kaili Formation |
A brachiopod belonging to the subphylum Rhynchonelliformea, order Kutorginida and the family Nisusiidae. |
|||
Nucleospira hannoniae[49] |
Nom. nov |
Valid |
Mottequin & Simon |
Tournai Formation |
A member of Athyridida belonging to the family Nucleospiridae; a replacement name for Athyris globulina de Koninck (1887). |
|||
Onniella variabilis[53] |
Sp. nov |
Valid |
Harper, Parkes & Zhan |
Raheen Formation |
A dalmanelloid brachiopod belonging to the family Dalmanellidae. |
|||
Ouraniorhynchus[51] |
Gen. et sp. nov |
Valid |
Modzalevskaya et al. |
Devonian (Lochkovian) |
A brachiopod. Genus includes new species O. dronovi. |
|||
Qidongia[40] |
Gen. et sp. nov |
In press |
Lü & Ma |
Devonian (late Frasnian) |
A member of Terebratulida. The type species is Q. tani. |
|||
Rhipidomella discreta[54] |
Sp. nov |
In press |
Cisterna et al. |
Carboniferous (late Serpukhovian–Bashkirian) |
El Paso Formation |
A brachiopod belonging to the group Orthida and the family Rhipidomellidae. |
||
Sericoidea hibernica[53] |
Sp. nov |
Valid |
Harper, Parkes & Zhan |
Raheen Formation |
A plectambonitoid brachiopod belonging to the family Sowerbyellidae. |
|||
Serratocrista scaldisensis[49] |
Sp. nov |
Valid |
Mottequin & Simon |
Tournai Formation |
A member of Orthotetida belonging to the family Schuchertellidae. |
|||
Simehorthis[55] |
Gen. et sp. nov |
Valid |
Kebria-Ee Zadeh, Popov & Ghobadi Pour |
Lashkarak Formation |
A member of Orthida belonging to the family Hesperorthidae. Genus includes new species S. fascicostellata. |
|||
Somalithyris lakhaparensis[56] |
Sp. nov |
Valid |
Mukherjee & Shome |
|||||
Starnikoviella[35] |
Gen. et sp. nov |
Valid |
Baranov |
The type species is S. settedabanica. |
||||
Tectogonotoechia rivasi[57] |
Sp. nov |
Valid |
García-Alcalde & Herrera |
Nogueras Formation |
A member of Rhynchonellida belonging to the superfamily Ancistrorhynchoidea and the family Iberirhynchiidae. |
|||
Thomasaria? baii[40] |
Sp. nov |
In press |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferida. |
|||
Thomasaria? liangi[40] |
Sp. nov |
In press |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferida. |
|||
Tunethyris blodgetti[58] |
Sp. nov |
Valid |
Feldman |
Saharonim Formation |
A member of Terebratulida belonging to the family Dielasmatidae. |
|||
Westonia mardini[59] |
Sp. nov |
In press |
Mergl et al. |
|||||
Xiangia[40] |
Gen. et sp. nov |
Junior homonym |
Lü & Ma |
Devonian (late Frasnian) |
A member of Spiriferida. The type species is X. liaoi. The generic name is preoccupied by Xiangia Peng (1987). |
|||
Zhanorthis[43] |
Gen. et sp. nov |
Valid |
Popov & Cocks |
An orthoid brachiopod. Genus includes new species Z. gerdkuhensis. |
||||
Molluscs
Echinoderms
Research
- Systematic revision of the North American members of the diploporitan family Holocystitidae is published by Sheffield & Sumrall (2017).[60]
- Triassic members of the otherwise Paleozoic groups of sea urchins (the family Proterocidaridae), brittle stars (the family Eospondylidae) and starfish are reported by Thuy, Hagdorn & Gale (2017).[61][62][63][64][65]
- Phylogenetic analysis and systematic revision of early to middle Paleozoic non-camerate crinoids published by Wright (2017). [66]
- Systematic revision of Ordovician camerate crinoids published by Cole (2017). [67]
- Major revision to the classification of fossil and extant Crinoidea by Wright et al. (2017), including the presentation of new phylogeny-based and rank-based classifications. [68]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Amblypygus matruhensis[69] |
Sp. nov |
Valid |
Ali |
Middle Miocene |
A sea urchin. |
|||
Ambonacrinus[70] |
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
Fombuena Formation |
A diplobathrid camerate crinoid. Genus includes new species A. decorus. |
||
Andymetra toarcensis[71] |
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
||||
Anthroosasterias[72] |
Gen. et sp. nov |
Valid |
Blake |
A starfish belonging to the family Urasterellidae. Genus includes new species A. mikrotero. |
||||
Antillaster farisi[73] |
Sp. nov |
Valid |
Ali |
Middle Eocene |
A sea urchin. |
|||
Aspidophiura? seren[74] |
Sp. nov |
Valid |
Ewin & Thuy |
Jurassic |
A brittle star. |
|||
Assericrinus[75] |
Gen. et sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. The type species is A. portusadernensis. |
|||
Ateleocystites? lansae[76] |
Sp. nov |
Valid |
McDermott & Paul |
Ordovician (Katian) |
Slade and Redhill Beds |
A mitrate belonging to the family Anomalocystitidae, possibly a species of Ateleocystites. |
||
Dalicrinus[70] |
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
Fombuena Formation |
A diplobathrid camerate crinoid. Genus includes new species D. hammanni. |
||
Diplodetus brisenoi[77] |
Sp. nov |
Valid |
Silva-Martínez et al. |
Late Cretaceous (early Campanian) |
A heart urchin belonging to the family Brissidae. |
|||
Echinocyamus belali[73] |
Sp. nov |
Valid |
Ali |
Middle Eocene |
A sea urchin. |
|||
Enakomusium whymanae[74] |
Sp. nov |
Valid |
Ewin & Thuy |
Jurassic |
A brittle star. |
|||
Eopatelliocrinus hispaniensis[70] |
Sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
Fombuena Formation |
|||
Eotiaris guadalupensis[78] |
Sp. nov |
Valid |
Thompson in Thompson, Petsios & Bottjer |
A sea urchin. The name first appeared in the publication of Thompson et al. (2015);[79] however, it was published in an online only journal Scientific Reports and it was not registered with ZooBank, making it invalid until it was validated by Thompson, Petsios & Bottjer (2017).[78] |
||||
Felbabkacystis[80] |
Gen. et sp. nov |
Valid |
Nardin et al. |
Jince Formation |
A transitional form between calyx-bearing and theca-bearing blastozoans. Genus includes new species F. luckae. |
|||
Fombuenacrinus[70] |
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
Fombuena Formation |
A diplobathrid camerate crinoid. Genus includes new species F. nodulus. |
||
Forcipicrinus[71] |
Gen. et sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
An isocrinid crinoid. Genus includes new species F. normannicus. |
|||
Goyacrinus[70] |
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
Fombuena Formation |
A diplobathrid camerate crinoid. Genus includes new species G. gutierrezi. |
||
Hessicrinus apertus[75] |
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
|||
Hessicrinus cooperi[75] |
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
|||
Metalia lindaae[73] |
Sp. nov |
Valid |
Ali |
Middle Eocene |
A sea urchin. |
|||
Sp. nov |
In press |
Schlüter & Wiese |
A sea urchin. |
|||||
Monostychia alanrixi[82] |
Sp. nov |
In press |
Sadler, Martin & Gallagher |
Miocene |
Colville Sandstone |
A sea urchin. |
||
Monostychia macnamarai[82] |
Sp. nov |
In press |
Sadler, Martin & Gallagher |
Miocene |
Colville Sandstone |
A sea urchin. |
||
Monostychia robertirwini[82] |
Sp. nov |
In press |
Sadler, Martin & Gallagher |
Miocene |
Colville Sandstone |
A sea urchin. |
||
Moroccodiscus[83] |
Gen. et sp. nov |
Valid |
Reich et al. |
Taddrist Formation |
A cyclocystoid echinoderm. Genus includes new species M. smithi. |
|||
Oehlerticrinus peachi[84] |
Sp. nov |
Valid |
Donovan & Fearnhead |
Early Devonian |
Looe Basin |
A crinoid belonging to the group Monobathrida and the family Hexacrinitidae. |
||
Ophiotitanos smithi[74] |
Sp. nov |
Valid |
Ewin & Thuy |
Jurassic |
A brittle star. |
|||
Ova rancoca[85] |
Sp. nov |
In press |
Zachos |
A sea urchin. |
||||
Palaeocomaster structus[71] |
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
||||
Pahvanticystis[86] |
Gen. et sp. nov |
In press |
Lefebvre & Lerosey-Aubril |
A solutan echinoderm. Genus includes new species P. utahensis. |
||||
Petalocrinus stenopetalus[87] |
Sp. nov |
Valid |
Mao et al. |
Silurian (Aeronian) |
A crinoid belonging to the family Petalocrinidae. |
|||
Picassocrinus[70] |
Gen. et sp. nov |
Valid |
Cole et al. |
Ordovician (Katian) |
Fombuena Formation |
|||
Ronsocrinus[88] |
Gen. et sp. nov |
Valid |
Cordie & Witzke |
A camerate crinoid belonging to the family Melocrinitidae. Genus includes new species R. rabia. |
||||
Sagittacrinus alifer[75] |
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
|||
Sagittacrinus longirostris[75] |
Sp. nov |
In press |
Gale |
Late Cretaceous (early Campanian) |
A crinoid. |
|||
Salenia palmyra[85] |
Sp. nov |
In press |
Zachos |
Clayton Formation |
A sea urchin. |
|||
Sanducystis[89] |
Gen. et sp. nov |
Valid |
Zamora et al. |
Cambrian (Furongian) |
Sandu Formation |
A stemmed echinoderm. The type species is S. sinensis. |
||
Singillatimetra truncata[71] |
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
||||
Solanocrinites jagti[71] |
Sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
||||
Spinimetra[71] |
Gen. et sp. nov |
Valid |
Hess & Thuy |
Early Jurassic |
A comatulid crinoid. Genus includes new species S. chesnieri. |
|||
Spirocrinus circularis[87] |
Sp. nov |
Valid |
Mao et al. |
Silurian (Aeronian) |
A crinoid belonging to the family Petalocrinidae. |
|||
Spirocrinus dextrosus[87] |
Sp. nov |
Valid |
Mao et al. |
Silurian (Aeronian) |
A crinoid belonging to the family Petalocrinidae. |
|||
Staurasterias[72] |
Gen. et sp. nov |
Valid |
Blake |
A starfish belonging to the family Urasterellidae. Genus includes new species S. elegans. |
||||
Superstesaster[90] |
Gen. et sp. nov |
Valid |
Villier et al. |
A starfish. Genus includes new species S. promissor. |
||||
Teleosaster[91] |
Gen. et sp. nov |
Valid |
Hunter & McNamara |
Cundlego Formation |
A brittle star. Genus includes new species T. creasyi. |
|||
Ulphaceaster[92] |
Gen. et sp. nov |
Valid |
Néraudeau et al. |
Late Cretaceous (Cenomanian) |
A sea urchin belonging to the family Archiaciidae. Genus includes new species U. sarthacensis. |
|||
Conodonts
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Voldman & Albanesi in Voldman et al. |
Early Ordovician |
|||||
Aldridgeognathus[94] |
Gen. et sp. nov |
Valid |
Miller et al. |
Amdeh Formation |
A member of Balognathidae. Genus includes new species A. manniki. |
|||
Sp. nov |
In press |
Carlorosi, Sarmiento & Heredia |
Ordovician (Dapingian) |
Santa Gertrudis Formation |
||||
Bispathodus ultimus corradinii[96] |
Subsp. nov |
Valid |
Söte, Hartenfels & Becker |
|||||
Coelocerodontus hunanensis[97] |
Sp. nov |
Valid |
Dong & Zhang |
Panjiazui Formation |
An euconodont. |
|||
Fahraeusodus jachalensis[98] |
Sp. nov |
Valid |
Feltes & Albanesi in Serra et al. |
Ordovician (Darriwilian) |
Gualcamayo Formation |
|||
Sp. nov |
Valid |
Dong & Zhang |
Bitiao Formation |
A member of Paraconodontida. |
||||
Gothodus vetus[93] |
Sp. nov |
Valid |
Voldman & Albanesi in Voldman et al. |
Early Ordovician |
||||
Gullodus tieqiaoensis[99] |
Sp. nov |
Valid |
Sun et al. |
Permian |
||||
Sp. nov |
In press |
Lüddecke, Hartenfels & Becker |
||||||
Sp. nov |
Valid |
Suttner, Kido & Suttner |
Middle Devonian |
Valentin Formation |
||||
Sp. nov |
Valid |
Cardoso, Sanz-López & Blanco-Ferrera |
Carboniferous (Pennsylvanian) |
Tapajós Group |
||||
Sp. nov |
Valid |
Hu & Qi in Hu et al. |
||||||
Iowagnathus[104] |
Gen. et sp. nov |
Valid |
Liu et al. |
Ordovician (Whiterock Stage) |
Winneshiek Konservat-Lagerstätte |
Genus includes new species I. grandis. |
||
Laiwugnathus hunanensis[97] |
Sp. nov |
Valid |
Dong & Zhang |
Huaqiao Formation |
A member of Paraconodontida. |
|||
Laiwugnathus transitans[97] |
Sp. nov |
Valid |
Dong & Zhang |
Cambrian (Guzhangian and Paibian) |
Chefu Formation |
A member of Paraconodontida. |
||
Lenathodus[105] |
Gen. et sp. nov |
Valid |
Izokh in Izokh & Yazikov |
Early Carboniferous |
Genus includes new species L. bakharevi. |
|||
Lugnathus[97] |
Gen. et sp. nov |
Valid |
Dong & Zhang |
Cambrian Stage 10 and Early Ordovician (Tremadocian) |
Panjiazui Formation |
A member of Paraconodontida. Genus includes new species L. hunanensis. |
||
Mayrodus[106] |
Gen. et sp. nov |
In press |
Zhang, Jowett & Barnes |
Cape Phillips Formation |
Genus includes new species M. melchini. |
|||
Miaognathus[97] |
Gen. et sp. nov |
Valid |
Dong & Zhang |
Shenjiawan Formation |
A member of Paraconodontida. Genus includes new species M. multicostatus. |
|||
Millerodontus[97] |
Gen. et sp. nov |
Valid |
Dong & Zhang |
Shenjiawan Formation |
An euconodont. Genus includes new species M. intermedius. |
|||
Mosherella praebudaensis[107] |
Sp. nov |
Valid |
Chen & Lukeneder |
Kasimlar Formation |
||||
Neopolygnathus communis yazikovi[105] |
Subsp. nov |
Valid |
Izokh in Izokh & Yazikov |
Early Carboniferous |
||||
Neopolygnathus fibula[108] |
Sp. nov |
In press |
Hartenfels & Becker |
Devonian (Famennian) |
||||
Omanognathus[94] |
Gen. et sp. nov |
Valid |
Miller et al. |
Amdeh Formation |
A member of Balognathidae. Genus includes new species O. daiqaensis. |
|||
Nom. nov |
Valid |
Klapper et al. |
A replacement name for Palmatolepis nodosa Klapper et al. (2004). |
|||||
Sp. nov |
Valid |
Plotitsyn & Zhuravlev |
||||||
Prosagittodontus compressus[97] |
Sp. nov |
Valid |
Dong & Zhang |
Cambrian (Guzhangian and Paibian) |
Chefu Formation |
A member of Paraconodontida. |
||
Pseudohindeodus elliptica[99] |
Sp. nov |
Valid |
Sun et al. |
Permian |
||||
Subsp. nov |
In press |
Hartenfels & Becker |
Devonian (Famennian) |
|||||
Quadralella wanlanensis[111] |
Sp. nov |
In press |
Zhang et al. |
Triassic |
||||
Quadralella yongyueensis[111] |
Sp. nov |
In press |
Zhang et al. |
Triassic |
||||
Sp. nov |
Valid |
Sun et al. |
Permian |
|||||
Tujiagnathus[97] |
Gen. et sp. nov |
Valid |
Dong & Zhang |
Bitiao Formation |
An euconodont. Genus includes new species T. gracilis. |
|||
Sp. nov |
In press |
Wang et al. |
||||||
Wangcunella[97] |
Gen. et sp. nov |
Valid |
Dong & Zhang |
Bitiao Formation |
An euconodont. Genus includes new species W. conicus. |
|||
Wangcunognathus[97] |
Gen. et sp. nov |
Valid |
Dong & Zhang |
Bitiao Formation |
A member of Paraconodontida. Genus includes new species W. elegans. |
|||
Sp. nov |
Valid |
Dong & Zhang |
Bitiao Formation |
A member of Paraconodontida. |
||||
Sp. nov |
Valid |
Dong & Zhang |
Chefu Formation |
A member of Paraconodontida. |
||||
Sp. nov |
Valid |
Dong & Zhang |
Chefu Formation |
A member of Paraconodontida. |
||||
Zentagnathus[93] |
Gen. et comb. nov |
Valid |
Voldman & Albanesi in Voldman et al. |
Early Ordovician |
A new genus for "Trapezognathus" primitivus Voldman, Albanesi & Zeballo in Voldman et al. (2013); genus also includes "Trapezognathus" argentinensis Rao et al. (1994) |
|||
Fishes
Amphibians
Research
- A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).[113]
- A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).[114]
- A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).[115]
- A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).[116]
- A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).[117]
- A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).[118]
- An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.[119]
- A juvenile specimen of Koskinonodon perfectus will be described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).[120]
- A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).[121]
- A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).[122]
- Redescription of Regalerpeton weichangensis based on eight new specimens and a study on the phylogenetic relationships of the species will be published by Rong (2017).[123]
- A redescription and a study of the phylogenetic relationships of Baurubatrachus pricei is published by Báez & Gómez (2017).[124]
- Frog fossils, including the first known fossils of shovelnose frogs, will be described from the early Pliocene of Kanapoi (Kenya) by Delfino (2017).[125]
- Description of the anatomy of the skeleton of the chroniosuchian species Bystrowiella schumanni and a study on the phylogenetic relationships of chroniosuchians will be published by Witzmann & Schoch (2017).[126]
- A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).[127]
New taxa
Temnospondyls
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Fortuny et al. |
||||||
Chinlestegophis[129] |
Gen. et sp. nov |
Valid |
Pardo, Small & Huttenlocker |
A member of Stereospondyli, possibly a stem-caecilian. The type species is C. jenkinsi. |
||||
Sp. nov |
Valid |
Marzola et al. |
||||||
Lissamphibians
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Chachaiphrynus[131] |
Gen. et sp. nov |
Valid |
Nicoli |
Oligocene |
A member of Odontophrynidae. The type species is C. lynchi. |
|||
Genibatrachus[132] |
Gen. et sp. nov |
Valid |
Gao & Chen |
Early Cretaceous |
Guanghua (upper part of Longjiang) Formation |
A crown-group frog. The type species is G. baoshanensis. |
||
Lepidosaurs
Rhynchocephalians
Research
- A study on the morphological diversity and rates of morphological evolution of extinct and extant rhynchocephalians is published by Herrera-Flores, Stubbs & Benton (2017).[133]
- A study on the bone histology and growth of the Jurassic pleurosaurid Palaeopleurosaurus is published by Klein & Scheyer (2017).[134]
- Jaws of Clevosaurus brasiliensis affected by osteomyelitis are described from the Late Triassic (Norian) Candelária Sequence of the Santa Maria Supersequence (Brazil) by Romo-de-Vivar-Martínez et al. (2017).[135]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Deltadectes[136] |
Gen. et sp. nov |
Valid |
Whiteside, Duffin & Furrer |
A basal member of Rhynchocephalia. The type species is D. elvetica. |
||||
Sp. nov |
Valid |
Whiteside & Duffin |
Late Triassic (Rhaetian) |
|||||
Penegephyrosaurus[137] |
Gen. et sp. nov |
Valid |
Whiteside & Duffin |
Late Triassic (Rhaetian) |
A member of the family Gephyrosauridae. The type species is P. curtiscoppi. |
|||
Lizards and snakes
Research
- An overview of the discoveries of Mesozoic lizards from Brazil is published by Simões et al. (2017).[138]
- A study on the anatomy and phylogenetic relationships of Eichstaettisaurus schroederi and Ardeosaurus digitatellus is published by Simões et al. (2017).[139]
- A redescription of the anatomy of the holotype specimen of the teiid species Callopistes bicuspidatus from the late Miocene–early Pliocene of Argentina is published by Brizuela & Albino (2017).[140]
- A description of the anatomy of the postcranial skeleton of the putative stem-amphisbaenian Slavoia darevskii and a study on its implications for the evolution of the postcranial skeleton of amphisbaenians is published by Tałanda (2017).[141]
- An autotomized tail of a shinisaurid is described from the Eocene Messel pit (Germany) by Smith (2017).[142]
- Fossils of a monitor lizard are described from the middle Pleistocene of Greece by Georgalis, Villa & Delfino (2017), representing the most recent known record of the family Varanidae from Europe.[143]
- A study on the phylogenetic relationships of members of Mosasauroidea is published by Simões et al. (2017).[144]
- A revision of mosasauroids from the Upper Cretaceous marine sediments associated with Gondwanan landmasses is published by Jiménez-Huidobro, Simões & Caldwell (2017).[145]
- A redescription of Mosasaurus hoffmannii based on examination of many specimens is published by Street & Caldwell (2017), who also provide emended diagnoses for both the genus Mosasaurus and its type species M. hoffmannii.[146]
- An overview of the snake fossil record from Brazil is published by Onary, Fachini & Hsiou (2017).[147]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Anguis rarus[148] |
Sp. nov |
In press |
Klembara & Rummel |
Early Miocene |
A slow worm. |
|||
Gaimanophis powelli[149] |
Sp. nov |
Valid |
Albino |
Late Miocene |
India Muerta Formation |
A boa. |
||
Gen. et sp. nov |
Valid |
Otero et al. |
Late Cretaceous (late Maastrichtian) |
A mosasaur. The type species is K. hervei. |
||||
Gen. et sp. nov |
Valid |
DeMar et al. |
Late Cretaceous (Campanian) |
A member of Iguanomorpha (the group containing crown and stem-iguanians) related to Saichangurvel davidsoni and Temujinia ellisoni. The type species is M. ovimonsensis. |
||||
Norisophis[152] |
Gen. et sp. nov |
Valid |
Klein et al. |
Cretaceous |
||||
Oardasaurus[153] |
Gen. et sp. nov |
In press |
Codrea, Venczel & Solomon |
A member of Teiioidea, possibly a relative of Barbatteius vremiri. Genus includes new species O. glyphis. |
||||
Pholidoscelis turukaeraensis[154] |
Sp. nov |
Valid |
Bochaton et al. |
Late Pleistocene and Holocene |
France |
A member of Teiidae. |
||
Stefanikia[155] |
Gen. et sp. nov |
Valid |
Čerňanský & Smith |
A lizard related to Eolacerta and the wall lizards. The type species is S. siderea. |
||||
Sp. nov |
Valid |
Dong, Wang & Evans |
Early Cretaceous |
|||||
Sp. nov |
Valid |
Dong, Wang & Evans |
Early Cretaceous |
|||||
Zilantophis[157] |
Gen. et sp. nov |
Valid |
Jasinski & Moscato |
Late Hemphillian |
||||
Ichthyosauromorphs
Research
- A study on the emergence date and changes of the evolutionary rate during the ichthyosauromorph evolution is published by Motani et al. (2017).[158]
- A reassessment of Ichthyosaurus communis and I. intermedius is published by Massare & Lomax (2017), who consider the latter species to be a junior synonym of the former.[159]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gengasaurus[160] |
Gen. et sp. nov |
Valid |
Paparella et al. |
Late Jurassic |
A member of Ophthalmosauridae. The type species is G. nicosiai. |
|||
Gen. et sp. nov |
Valid |
Delsett et al. |
Early Cretaceous (early Berriasian) |
A member of Ophthalmosauridae. The type species is K. nui. |
||||
Sauropterygians
Research
- A study on the mechanisms generating vertebral counts and their regionalisation during embryo development that were responsible for high plasticity of the body plan of sauropterygians is published by Soul & Benson (2017).[162]
- A study on the morphology of the occlusal surface of placodont teeth and its implications for the diet of the placodonts is published by Crofts et al. (2017).[163]
- New specimen of Dianmeisaurus gracilis is described from the Middle Triassic Guanling Formation (China) by Shang, Li & Wu (2017).[164]
- Fossilized soft tissues preserved with skeletal remains of Middle Triassic nothosaurs from Poland are described by Surmik, Rothschild & Pawlicki (2017).[165]
- Description of a new specimen of Lariosaurus xingyiensis from the Middle Triassic Falang Formation (China) and a phylogenetic analysis of the family Nothosauridae is published by Lin et al. (2017), who transfer the species "Nothosaurus" juvenilis, "N." youngi and "N." winkelhorsti to the genus Lariosaurus.[166]
- Evidence of septic necrosis and decompression syndrome-associated avascular necrosis affecting bones of Pistosaurus longaevus is reported by Surmik et al. (2017).[167]
- A study on the function of the long neck in plesiosaurs as indicated by the anatomy of the neck is published by Noè, Taylor & Gómez-Pérez (2017).[168]
- A description of a new specimen of Colymbosaurus svalbardensis from the Tithonian–Berriasian Agardhfjellet Formation (Svalbard, Norway), a reevaluation of the diagnostic features of the species and a study on its phylogenetic relationships is published by Roberts et al. (2017).[169]
- A study on the tooth formation cycle in elasmosaurid plesiosaurs is published by Kear et al. (2017).[170]
- A redescription of the holotype specimen of Tuarangisaurus keyesi and a study on the phylogenetic relationships of the species is published by O'Gorman et al. (2017).[171]
- A study on the anatomy of the vertebra of Vegasaurus molyi and its implications for the anatomy of the nervous system of the species is published by O'Gorman & Fernandez (2017).[172]
- A study on the skeletal morphology and histology of a perinatal aristonectine plesiosaur specimen recovered from the Lopez de Bertodano Formation (Seymour Island, Antarctica) is published by O'Gorman, Talevi & Fernández (2017).[173]
- A reappraisal and a study on the phylogenetic relationships of Mauisaurus is published by Hiller et al. (2017).[174]
- Libonectes atlasense is redescribed by Sachs & Kear (2017), who consider this species to be likely synonymous with Libonectes morgani.[175]
- An elasmosaurid specimen closely related to Vegasaurus molyi, Kawanectes lafquenianum, Morenosaurus stocki and aristonectines is described from the Late Cretaceous (late Maastrichtian) Lopez de Bertodano Formation (Antarctica) by O’Gorman & Coria (2017), who name a new elasmosaurid clade Weddellonectia.[176]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Hispaniasaurus[177] |
Gen. et sp. nov |
Valid |
Marquez-Aliaga et al. |
Cañete Formation |
A marine reptile with nothosauroid affinities. The type species is H. cranioelongatus. |
|||
Gen. et sp. nov |
Valid |
Fischer et al. |
A member of Pliosauridae. The type species is L. itilensis. |
|||||
Gen. et sp. nov |
Valid |
Frey et al. |
Late Cretaceous |
Aguas Nuevas Formation |
A member of Polycotylidae. The type species is M. fernandezi. |
|||
Nakonanectes[180] |
Gen. et sp. nov |
Valid |
Serratos, Druckenmiller & Benson |
Late Cretaceous (early Maastrichtian) |
A member of Elasmosauridae. The type species is N. bradti. |
|||
Thaumatodracon[181] |
Gen. et sp. nov |
Valid |
Smith & Araújo |
A member of the family Rhomaleosauridae. The type species is T. wiedenrothi. |
||||
Turtles
Research
- A study on the evolution of the turtle vertebral column as indicated by the anatomy of the Late Triassic turtles and a phylogenetic analysis (which also tests the suggested relationship of Eunotosaurus africanus and Pappochelys rosinae to turtles) is published by Szczygielski (2017).[182]
- A study on the Early and Middle Triassic turtle tracks and their implications for the origin of turtles will be published by Lichtig et al. (2017).[183]
- A review of the basalmost known members of Testudinata is published by Joyce (2017), who defines new clades Mesochelydia (the clade that arises from the most recent common ancestor of Condorchelys antiqua, Eileanchelys waldmani, Heckerochelys romani and Kayentachelys aprix) and Perichelydia (the clade that arises from the most recent common ancestor of Meiolania platyceps, Helochelydra nopcsai, Sichuanchelys chowi and Testudo graeca).[184]
- A method of inferring habitats of extinct turtles based on measurements of the shell is proposed by Lichtig & Lucas (2017).[185]
- Meiolaniid fossils are described from the Eocene Rundle Formation (eastern Queensland, Australia) by Poropat et al. (2017), representing the oldest meiolaniid remains found in Australasia to date.[186]
- Reconstructions of the morphology of the brain, inner ear and nasal cavities in the meiolaniids Niolamia argentina, Gaffneylania auricularis and Meiolania platyceps are presented by Paulina-Carabajal et al. (2017).[187]
- New fossil material of Jiangxichelys ganzhouensis is described by Tong et al. (2017), who also transfer the species "Zangerlia" neimongolensis to the genus Jiangxichelys.[188]
- A juvenile specimen of Manchurochelys manchoukuoensis is described from the Early Cretaceous Yixian Formation (China) by Shao et al. (2017).[189]
- A redescription of Ctenochelys acris based on several specimens from the Late Cretaceous (early Campanian) Mooreville Chalk of Alabama (United States) is published by Gentry (2017).[190]
- Description of a new specimen of Camerochelys vilanovai from the Early Cretaceous of Spain and a study on the phylogenetic relationships of the species is published by Pérez-García, Sáez-Benito & Murelaga (2017).[191]
- Description of new specimens of the baenid species Baena arenosa and Chisternon undatum from the Eocene Uinta Formation (Utah, United States) is published by Smith et al. (2017).[192]
- A description of the skull morphology of Anosteira maomingensis is published by Danilov et al. (2017).[193]
- Morphologically and histologically diagnostic trionychid specimens are reported from the Early Cretaceous (Barremian–Aptian) of Japan by Nakajima et al. (2017).[194]
- A redescription of the holotype specimen of Procyclanorbis sardus (a Miocene trionychid from Sardinia, Italy) is published by Georgalis et al. (2017).[195]
- Fossilized shell remains of geoemydids, kinosternids and a chelydrid are described from five Pleistocene localities belonging to the Tablazo Formation (Ecuador) by Cadena, Abella & Gregori (2017).[196]
- Fossils of a member of the tortoise genus Titanochelon are described from the early Pleistocene of Spain by Pérez-García, Vlachos & Arribas (2017), representing the youngest evidence of a large tortoise in continental Europe.[197]
- A study on the anatomy of the neck vertebrae of the Late Jurassic stem-pleurodire Platychelys oberndorferi and its implications for the mechanism allowing neck and head retraction in this species is published by Anquetin, Tong & Claude (2017).[198]
- A study on the anatomy of the shell and pelvis of the specimens of Platychelys oberndorferi from Switzerland is published by Sullivan & Joyce (2017).[199]
- A plate from the Lower Cretaceous (uppermost Hauterivian-basal Barremian) El Castellar Formation (Spain) is interpreted as the oldest known record of the stem-pleurodire family Dortokidae by Pérez-García, Cobos & Royo-Torres (2017).[200]
- A description of a large shell fragment from the Late Cretaceous Marília Formation (Brazil), interpreted as belonging to the largest podocnemidoid turtle reported from the Bauru Basin so far, is published by Hermanson, Ferreira & Langer (2017).[201]
- A study on the skulls of the Late Cretaceous stem-podocnemidid Bauruemys elegans from the Presidente Prudente Formation (Brazil) is published by Mariani & Romano (2017), who interpret all specimens as belonging to the same species and likely to the same population, assess the ontogenetic changes in the skull of B. elegans and tentatively assess the changes of eating preference habits over ontogeny in the species.[202]
- A restudy of the type material of the Late Cretaceous pan-chelid Linderochelys rinconensis and a description of new fossils of the species is published by Jannello et al. (2017).[203]
- Two incomplete hatchling specimens of members of the genus Araripemys will be described from the Lower Cretaceous Crato Formation (Brazil) by Oliveira & Kellner (2017).[204]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Chelonoidis marcanoi[205] |
Sp. nov |
Valid |
Turvey et al. |
Late Quaternary |
A tortoise, a species of Chelonoidis. |
|||
Eocenochelus[206] |
Gen. et comb. et 2 sp. nov |
Valid |
Pérez-García, de Lapparent de Broin & Murelaga |
Eocene (middle Ypresian to Priabonian) |
A member of Podocnemididae belonging to the subfamily Erymnochelyinae. The type species is "Erymnochelys" eremberti Broin (1977); genus also includes new species E. lacombianus and E. farresi. |
|||
Mendozachelys[207] |
Gen. et sp. nov |
Valid |
De la Fuente et al. |
Late Cretaceous (late Campanian–early Maastrichtian) |
Loncoche Formation |
A member of Chelidae. The type species is M. wichmanni. |
||
Owadowia[208] |
Gen. et sp. nov |
In press |
Szczygielski, Tyborowski & Błażejowski |
Kcynia Formation |
A member of Pancryptodira. The type species is O. borsukbialynickae. |
|||
Perochelys hengshanensis[209] |
Sp. nov |
Valid |
Brinkman, Rabi & Zhao |
Hengshan Formation |
A pan-trionychid. |
|||
Petrochelys[210] |
Gen. et comb. nov |
Valid |
Vitek et al. |
Early Cretaceous (Albian) |
A member of Trionychidae; a new genus for "Trionyx" kyrgyzensis Nessov (1995). |
|||
Sp. nov |
Valid |
Püntener, Anquetin & Billon-Bruyat |
A member of the family Plesiochelyidae. |
|||||
Rionegrochelys[212] |
Gen. et sp. nov |
In press |
De la Fuente, Maniel & Jannello in De La Fuente et al. |
A relative of members of the family Chelidae. The type species is R. caldieroi. |
||||
“Trionyx” onomatoplokos[213] |
Nom. nov |
Valid |
Georgalis & Joyce |
Late Cretaceous (Santonian–early Campanian) |
A member of Pan-Trionychidae of uncertain phylogenetic placement; a replacement name for Palaeotrionyx riabinini Kuznetsov & Chkhikvadze (1987). |
|||
Archosauriformes
Pseudosuchians
Research
- A study on the evolutionary history and ecological correlates of bone ornamentation in extant and extinct pseudosuchians is published by Clarac et al. (2017).[214]
- A redescription of the anatomy of the postcranial skeleton of Gracilisuchus stipanicicorum and a study on the phylogenetic relationships of the species will be published by Lecuona, Desojo & Pol (2017).[215]
- Description of partial ribs from the Late Triassic Vinita Formation (formerly Turkey Branch Formation; Virginia, United States), referred to Euscolosuchus olseni, is published by Scheyer & Sues (2017).[216]
- A study on the phylogenetic relationships of Luperosuchus fractus is published by Nesbitt & Desojo (2017).[217]
- A study on the bone histology and growth of Batrachotomus kupferzellensis is published by Klein, Foth & Schoch (2017).[218]
- Crocodylomorph eggs and eggshells are described from the Late Jurassic Lourinhã Formation (Portugal) by Russo et al. (2017), who name new ootaxa Suchoolithus portucalensis and Krokolithes dinophilus.[219]
- Tracks of a crocodyliform representing the ichnofamily Batrachopodidae are described from the Early Cretaceous (late Aptian) Calonda Formation (Angola) by Mateus et al. (2017), who name a new ichnotaxon Angolaichnus adamanticus.[220]
- A description of a braincase assigned to Macelognathus vagans recovered from the Fruita Paleontological Area (Colorado, United States) and a study on the phylogenetic relationships of the species is published by Leardi, Pol & Clark (2017).[221]
- A study on the changes in morphological diversity of the skulls of extinct and extant crocodyliforms through time is published by Wilberg (2017).[222]
- Razanandrongobe sakalavae from the Middle Jurassic of Madagascar is interpreted as a member of Notosuchia by Dal Sasso et al. (2017).[223]
- A description of the anatomy of the postcranial skeleton of Campinasuchus dinizi based on five specimens is published by Cotts et al. (2017).[224]
- A study on the anatomy of the pectoral girdle and forelimb bones of Montealtosuchus arrudacamposi, as well as its implications for the locomotion habits of the animal, is published by Tavares et al. (2017).[225]
- Postcranial remains of a goniopholidid, interpreted as remains of the second fossil specimen referable to Dakotasuchus kingi, are described from the Late Cretaceous (Cenomanian) Cedar Mountain Formation (Utah, United States) by Frederickson et al. (2017).[226]
- Virtual cranial endocast of Pelagosaurus typus is reconstructed by Pierce, Williams & Benson (2017).[227]
- A study on the mode of reproduction of metriorhynchids is published by Herrera et al. (2017).[228]
- A study on the bone histology in the femora of two specimens attributed to Iberosuchus macrodon and its implications for the growth rate and resting metabolic rate in the species is published by Cubo, Köhler & de Buffrenil (2017).[229]
- A specimen of a neosuchian crocodylomorph (probably a member of the genus Susisuchus) with extensively preserved epidermis and limb musculature is described from the Lower Cretaceous (Aptian) Crato Formation (Brazil) by Field & Martill (2017).[230]
- An isolated mandible of a neosuchian possibly belonging or related to the family Hylaeochampsidae is described from the Middle Jurassic (Bathonian) Duntulm Formation (Isle of Skye, Scotland, United Kingdom) by Yi et al. (2017).[231]
- Revision of the fragmentary eusuchian fossils from the Late Cretaceous of Western Europe, previously attributed to members of the species Allodaposuchus precedens, will be published by Narváez et al. (2017).[232]
- A study of the bone histology of a humerus of an eusuchian crocodyliform (possibly a member of the genus Acynodon) from the Late Cretaceous (Campanian) Laño quarry (northern Spain) and its implications for the skeletal growth pattern of the animal is published by Company & Pereda-Suberbiola (2017).[233]
- A reassessment of the anatomy and phylogenetic relationships of Asiatosuchus nanlingensis and Eoalligator chunyii will be published by Wu, Li & Wang (2017), who reinstate the latter taxon as a species distinct from the former one.[234]
- A study comparing skull shape and inferring dietary preferences of crocodylians known from the Eocene Geiseltal-Fossillagerstätte (Germany), representing genera Diplocynodon, Asiatosuchus, Boverisuchus and Allognathosuchus, is published by Hastings & Hellmund (2017).[235]
- A study on the anatomy of the braincase of Gryposuchus neogaeus is published by Bona, Carabajal & Gasparini (2017).[236]
- New fossils of Baru wickeni and Baru darrowi are described from the Oligocene and Miocene of Australia by Yates (2017).[237]
- A study on the evolution of locomotion of mekosuchines based on pectoral and pelvic girdles of mekosuchines recovered from the Eocene to Miocene sites in Australia is published by Stein et al. (2017).[238]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cassissuchus[239] |
Gen. et sp. nov |
Valid |
Buscalioni |
A member of the family Gobiosuchidae. The type species is C. sanziuami. |
||||
Sp. nov |
Valid |
Heckert, Fraser & Schneider |
Late Triassic |
An aetosaur. |
||||
Gen. et sp. et comb. nov |
Valid |
Schwarz, Raddatz & Wings |
Late Jurassic (Kimmeridgian) |
Camadas de Guimarota |
A member of Atoposauridae. The type species is K. langenbergensis; genus also includes "Theriosuchus" guimarotae Schwarz & Salisbury (2005). |
|||
Gen. et comb. nov |
In press |
Johnson et al. |
A member of the family Teleosauridae; a new genus for "Steneosaurus" obtusidens Andrews (1909). |
|||||
Maomingosuchus[243] |
Gen. et comb. nov |
In press |
Shan et al. |
A new genus for "Tomistoma" petrolica Yeh (1958). |
||||
Sp. nov |
Valid |
Cidade et al. |
Late Miocene |
Urumaco Formation |
A caiman. |
|||
Non-avian dinosaurs
Research
- A study on the phylogenetic relationships of the dinosaurs is published by Baron, Norman & Barrett (2017), recovering sister-group relationship between Ornithischia and Theropoda.[245]
- An investigation into common approaches used to identify sexual dimorphism in the fossil record is published by Mallon (2017), who argues that the available evidence precludes the detection of sexual dimorphism in non-avian dinosaurs.[246]
- A study on the possible reasons why sexual dimorphism is rarely detected in non-avian dinosaurs, indicated by body-size data from the American alligator and the greater rhea, is published by Hone & Mallon (2017).[247]
- A study on changes in morphological and biomechanical diversity of the mandibles of herbivorous dinosaurs through time, as well as its implications for the relationship between jaw shape, function, and ecological evolutionary drivers in the evolution of herbivorous dinosaurs, is published by MacLaren et al. (2017).[248]
- A study on the anatomical diversity of the jugal bone in dinosaurs and its evolution is published by Sullivan & Xu (2017).[249]
- A study on a diverse dinosaur ichnofauna from the Lower Cretaceous Broome Sandstone (Australia), including descriptions of six new ichnospecies, is published by Salisbury et al. (2017).[250]
- Theropod tracks and potential heterodontosaurid tracks are described from the Lower Jurassic Elliot Formation (Lesotho) by Abrahams et al. (2017).[251]
- Dinosaur footprints are reported from the Cretaceous Stanley Pool Formation (Gabon) by M’Voubou, Moussavou & Ligna (2017).[252]
- Dinosaur trackways are reported from the Cretaceous (probably Cenomanian-Turonian) Mamfe Basin (Cameroon) by Martin et al. (2017).[253]
- A re-evaluation of the purported Triassic dinosaur fossils from Poland discovered prior to the description of Silesaurus opolensis is published by Skawiński et al. (2017), who interpret Velocipes guerichi as a theropod dinosaur.[254]
- A study evaluating whether reported set of unique collagen peptides of Tyrannosaurus rex and Brachylophosaurus canadensis could reflect cross-sample contamination from the modern reference material used is published by Buckley et al. (2017).[255]
- A study on the relationship between step width and speed (stride length) in Late Triassic theropod trackways, its implications for non-avian theropod locomotion and for how it compared to bird and human locomotion is published by Bishop et al. (2017).[256]
- A description and a study on the phylogenetic affinities of the theropod fossils recovered from the Early Cretaceous (Berriasian–Valanginian) Bajada Colorada Formation (Argentina) is published by Canale et al. (2017).[257]
- Tracks of a giant theropod dinosaur are described from the Late Jurassic (Kimmeridgian) Reuchenette Formation (Switzerland) by Marty et al. (2017), who name a new ichnotaxon Jurabrontes curtedulensis.[258]
- Tracks of a large theropod dinosaur are described from the Late Jurassic (Kimmeridgian) Reuchenette Formation (Switzerland) by Razzolini et al. (2017), who name a new ichnotaxon Megalosauripus transjuranicus.[259]
- Didactyl theropod tracks with similarities to footprints attributed to small deinonychosaurian theropods will be described from the Middle Jurassic (Aalenian-Bajocian) Dansirit Formation (Iran) by Xing, Abbassi & Lockley (2017).[260]
- A study on the diversity and phylogenetic relationships of the Late Jurassic theropod dinosaurs known from the isolated teeth recovered from the Lusitanian Basin (Portugal) will be published by Malafaia et al. (2017).[261]
- A study on the ontogenetic changes in the skeleton of Limusaurus inextricabilis as indicated by the anatomy of the skeletons of 19 specimens representing six ontogenetic stages is published by Wang et al. (2017).[262]
- Paulina-Carabajal & Filippi (2017) reconstruct the endocranial cavity enclosing the brain, cranial nerves, blood vessels and the labyrinth of the inner ear of the holotype specimen of Viavenator exxoni.[263]
- Description of the osteology of Viavenator exxoni will be published by Filippi et al. (2017).[264]
- New description of the morphology of Pycnonemosaurus nevesi and a study of the phylogenetic relationships of the species is published by Delcourt (2017).[265]
- Detailed maps of the musculature of the forelimbs of Majungasaurus crenatissimus are created by Burch (2017).[266]
- A study on the forelimb posture of four articulated specimens of Chilesaurus diegosuarezi from the Late Jurassic Toqui Formation (Chile) is published by Chimento et al. (2017).[267]
- A review of taxonomy and revised definitions of members of the family Spinosauridae, as well as a study on their ecology and behaviour is published by Hone & Holtz (2017).[268]
- A partial spinosaurid tooth is described from the Early Cretaceous (Berriasian–Valanginian) Feliz Deserto Formation (Brazil) by Sales et al. (2017), representing the oldest known occurrence of a spinosaurid from South America so far.[269]
- Description of a series of tail vertebrae of Allosaurus fragilis, preserving sulci interpreted as origin attachment sites of the caudofemoralis longus muscle, is published by Cau & Serventi (2017).[270]
- A study on the skull morphology of Neovenator salerii, indicating presence of a complex network of large, anastomosing canals in the premaxilla and maxilla (interpreted as part of the neurovascular system), is published by Barker et al. (2017).[271]
- A description of the braincase anatomy of Murusraptor barrosaensis is published by Paulina-Carabajal & Currie (2017).[272]
- A study on the integumentary structures of Sinosauropteryx, rejecting their interpretation as degraded collagen fibres, is published by Smithwick et al. (2017).[273]
- A description of the preserved fossil integument of tyrannosaurid theropods, confirming presence of scaly skin, is published by Bell et al. (2017).[274]
- A study on the feeding behaviour of Tyrannosaurus rex and the factors that enabled members of this species to pulverize bones before eating them is published by Gignac & Erickson (2017).[275]
- A study on the running abilities of Tyrannosaurus rex is published by Sellers et al. (2017).[276]
- A description of Early Cretaceous ornithomimosaur fossils recovered from the Arundel Clay (Maryland, United States) is published by Brownstein (2017), who also reinterprets Nedcolbertia justinhofmanni as a basal member of Ornithomimosauria.[277]
- Fossils of an ornithomimosaur considered to be a member of the genus Qiupalong of uncertain specific assignment are described from the Late Cretaceous (Campanian) Belly River Group strata in Dinosaur Provincial Park (Alberta, Canada) by McFeeters et al. (2017), representing the first North American occurrence of a member of this genus.[278]
- A study on the feeding behavior and niche differentiation in therizinosaurs as indicated by the morphology of their mandibles is published by Lautenschlager (2017).[279]
- Putative therizinosaur tracks are described from the Late Cretaceous of Morocco by Masrour, Lkebir & Pérez-Lorente (2017).[280]
- A study on the incubation temperature of oviraptorosaur eggs recovered from the Upper Cretaceous Nanxiong Formation (China) is published by Amiot et al. (2017).[281]
- An osteological description of the skull of the holotype specimen of Buitreraptor gonzalezorum is published by Gianechini, Makovicky & Apesteguía (2017).[282]
- Description of the anatomy of the postcranial skeleton of a newly discovered specimen of Buitreraptor gonzalezorum will be published by Novas et al. (2017).[283]
- Description of the anatomy of the skeleton of Neuquenraptor argentinus is published by Brissón Egli et al. (2017).[284]
- Wang et al. (2017) reconstruct the body outline of Anchiornis huxleyi based on the data on soft tissues revealed by laser-stimulated fluorescence imaging.[285]
- Description of four new specimens of Anchiornis huxleyi and a study on the phylogenetic relationships of the species is published by Pei et al. (2017).[286]
- A study on the evolution of the sauropodomorph feeding apparatus is published by Button, Barrett & Rayfield (2017).[287]
- A study on the bone microstructure of sauropodomorph dinosaurs and on its implications for the growth patterns of basal sauropodomorphs is published by Cerda et al. (2017).[288]
- A study on the shape differences among sauropodomorph humeri and femora and their implications for the posture and limb mobility of titanosauriform sauropods is published by Ullmann, Bonnan & Lacovara (2017).[289]
- Protein remains preserved in skeletal elements of an Early Jurassic sauropodomorph dinosaur Lufengosaurus are described by Lee et al. (2017).[290]
- A sauropod tooth is described from the Santonian Csehbánya Formation (Hungary) by Ősi, Csiki-Sava & Prondvai (2017), representing the first known sauropod body fossil from the Santonian of Europe.[291]
- Plant remains found in the Late Cretaceous (Maastrichtian) Lameta sediments and associated sauropod coprolites from the Nand-Dongargaon basin (Maharashtra, India) are described by Sonkusare, Samant & Mohabey (2017), providing information on the diet of sauropod dinosaurs.[292]
- A study on the maximum vertical reach of sauropod necks will be published by Paul (2017).[293]
- A study on the condyle convexity and range of motion of the joints situated between the vertebrae of the sauropod dinosaurs as indicated by comparison with extant alligators is published by Fronimos & Wilson (2017).[294]
- A study on the complexity pattern of the neurocentral sutures in the vertebrae of Spinophorosaurus nigerensis and its implications for the stress distribution in the vertebrae of this sauropod is published by Fronimos & Wilson (2017).[295]
- A study on the bifurcated spines in the neck vertebrae of diplodocid sauropods, their implications for the reconstruction of soft tissues associated with bifurcated spines and on the neck posture of diplodocid sauropods, is published by Woodruff (2017).[296]
- Five partial vertebrae of a subadult specimen of Barosaurus are described from the Late Jurassic (Kimmeridgian) Morrison Formation (the Carnegie Quarry of Dinosaur National Monument; Utah, United States) by Hanik, Lamanna & Whitlock (2017).[297]
- A study on the postcranial skeletal pneumaticity in rebbachisaurid sauropods, based primarily on the vertebrae of Katepensaurus goicoecheai, is published by Ibiricu et al. (2017), who report a form of pneumacity that has not previously been observed in sauropods.[298]
- A revision of the sauropod fossil material from the Lower Cretaceous (Barremian) Arcillas de Morella Formation (Spain), indicating presence of at least three sauropod taxa, will be published by Mocho et al. (2017).[299]
- A study on the anatomy of the teeth of a specimen of Camarasaurus recovered from the Howe-Stephens Quarry (Bighorn Basin, Wyoming, United States) is published by Wiersma & Sander (2017).[300]
- Partial skeleton of Camarasaurus is described from the Little Snowy Mountains (Montana, United States) by Woodruff & Foster (2017), representing the northernmost occurrence of a sauropod in the Morrison Formation reported so far.[301]
- New information on the anatomy of the lectotype specimen of Lusotitan atalaiensis and a study on the phylogenetic relationships of the species is published by Mocho, Royo-Torres & Ortega (2017).[302]
- Description of new fossils referrable to the type individual of Austrosaurus mckillopi and reassessment of the fossil material attributed to members of this species will be published by Poropat et al. (2017).[303]
- A study on the histology of the bony structures found with the holotype specimen of Agustinia ligabuei is published by Bellardini & Cerda (2017), who argue that these structures are not osteoderms and that there is no evidence of the presence of dermal armor in Agustinia.[304]
- Tail vertebrae of a titanosaur sauropod affected by osteomyelitis is described from the Late Cretaceous (Campanian) Anacleto Formation (Argentina) by de García et al. (2017).[305]
- A study on the internal anatomy of the titanosaur osteoderms recovered from the Late Cretaceous site of Lo Hueco (Spain) and the function of titanosaur dermal armor is published by Vidal et al. (2017).[306]
- A description of new fossil material of Alamosaurus sanjuanensis (an articulated series of cervical vertebrae from Big Bend National Park, Texas) and a study of phylogenetic relationships of this species is published by Tykoski & Fiorillo (2017).[307]
- A redescription of the postcranial material of Lesothosaurus diagnosticus is published by Baron, Norman & Barrett (2017), who argue that Stormbergia dangershoeki is most likely a junior synonym of L. diagnosticus.[308]
- A mandible recovered from the Lower Jurassic upper Elliot Formation (South Africa), assigned to Lesothosaurus diagnosticus, is digitally reconstructed in 3D by Sciscio et al. (2017).[309]
- A study on the phylogenetic relationships of the stegosaurians is published by Raven & Maidment (2017).[310]
- A study on the purported stegosaur fossils from the Middle Jurassic (Aalenian-Bajocian) Inferior Oolite Group (United Kingdom) is published by Galton (2017).[311]
- A study on the purported stegosaurian dermal plate from the Upper Cretaceous (Maastrichtian) Kallamedu Formation (India) is published by Galton & Ayyasami (2017).[312]
- A well-preserved stegosaurian sacrum with paired ilia, referred to the species Wuerhosaurus ordosensis and providing new information on the anatomy of the pelvic girdle of the taxon, is described from the Lower Cretaceous Luohandong Formation (China), is described by Hou & Ji (2017), who interpret the finding as confirming that Wuerhosaurus ordosensis and Wuerhosaurus homheni are different species.[313]
- A study on the anatomical features related to feeding and the mechanisms of food processing in ankylosaurian dinosaurs is published by Ősi et al. (2017).[314]
- Probable ankylosaurian footprints will be described from the Upper Jurassic Guará Formation (Brazil) by Francischini et al. (2017).[315]
- Description of a new specimen of Crichtonpelta benxiensis (nearly completely preserved skull) from the Cretaceous (late Albian–Turonian) Sunjiawan Formation (China) and a study on the phylogenetic relationships of the species is published by Yang et al. (2017).[316]
- A study on the length of the incubation period in Hypacrosaurus stebingeri and Protoceratops andrewsi is published by Erickson et al. (2017).[317]
- A study on the ornithischian teeth known from the Upper Cretaceous Csehbánya Formation (Hungary) is published by Virág & Ősi (2017), attributing some of the teeth to the genus Mochlodon and some to the genus Ajkaceratops (the first teeth that can provisionally be referred to the latter genus).[318]
- A naturally occurring brain endocast of an iguanodontian ornithopod (possibly Barilium or Hypselospinus), preserving mineralized brain soft tissues, is described from the Early Cretaceous (Valanginian) Tunbridge Wells Sand Formation (United Kingdom) by Brasier et al. (2017).[319]
- A study on the individual variation in the morphology of the postcranial skeleton of Iguanodon bernissartensis is published by Verdú et al. (2017), who consider Delapparentia turolensis to be impossible to distinguish from Iguanodon species based on the available material.[320]
- Description of the osteology of the skeleton of a specimen of Ouranosaurus nigeriensis exhibited at the Natural History Museum of Venice is published by Bertozzo, Dalla Vecchia & Fabbri (2017).[321]
- A description of a new specimen of Eolambia caroljonesa and a study on the phylogenetic relationships of the species is published by McDonald et al. (2017).[322]
- A redescription of the skull anatomy of Edmontosaurus regalis and a study on the phylogenetic relationships of hadrosaurids is published by Xing, Mallon & Currie (2017).[323]
- Schroeter et al. (2017) reevaluate collagen I peptides recovered from a specimen of Brachylophosaurus canadensis in 2009 and recover additional eight peptide sequences of collagen I from the same specimen.[324]
- A study on the phylogenetic relationships of Nipponosaurus sachalinensis will be published by Takasaki et al. (2017).[325]
- An isolated dentary and postcranial skeleton from Dinosaur Provincial Park (Alberta, Canada) is interpreted as likely representing the same skeleton as the holotype skull of Corythosaurus excavatus by Bramble et al. (2017).[326]
- A study on the morphological diversity of the snouts and frills of the ceratopsians, as well as on the skull and jaw shape changes in the evolution of the group is published by Maiorino et al. (2017).[327]
- An isolated ceratopsid tooth is described from the Late Cretaceous (late Maastrichtian) Owl Creek Formation (Mississippi, United States) by Farke & Phillips (2017), representing the first reported occurrence of a ceratopsid from eastern North America.[328]
- A study on correlating the microstructure and nanostructure from femoral bones of Koreanosaurus through electron microscopy is published by Kim et al. (2017).[329]
- A study on Dinosaur Park troodonts concludes that Troodon is a nomen dubium, revives Stenonychosaurus and names a new genus, Latenivenatrix.[330]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Tsogtbaatar et al. |
An ornithomimid theropod. The type species is A. tugrikinensis. |
||||||
Gen. et sp. nov |
Valid |
Evans et al. |
A troodontid paravian theropod. The type species is A. curriei. |
|||||
Gen. et sp. nov |
Valid |
Pu et al. |
A caenagnathid oviraptorosaur theropod. The type species is B. sinensis. |
|||||
Gen. et sp. nov |
Valid |
Cruzado-Caballero & Powell |
Late Cretaceous (late Campanian–early Maastrichtian) |
A hadrosaurid ornithopod. The type species is B. rionegrensis. |
||||
Gen. et sp. nov |
In Press |
Brown et al. |
A nodosaurid thyreophoran. The type species is B. markmitchelli. |
|||||
Gen. et sp. nov |
Valid |
Longrich et al. |
Late Cretaceous (late Maastrichtian) |
An abelisaurid theropod. The type species is C. barbaricus. |
||||
Gen. et sp. nov |
Lü et al. |
An oviraptorid theropod. The type species is C. jacobsi. |
||||||
Gen. et sp. nov |
Valid |
Shen et al. |
A troodontid theropod. The type species is D. liaoningensis. |
|||||
Sp. nov |
Carr et al. |
|||||||
Gen. et sp. nov |
Valid |
Torcida Fernández-Baldor et al. |
Early Cretaceous (late Barremian–early Aptian) |
Castrillo de la Reina Formation |
A sauropod belonging to the group Somphospondyli. The type species is E. eastwoodi. |
|||
Sp. nov |
Valid |
Tschopp & Mateus |
||||||
Gen. et sp. nov |
Salgado et al. |
Middle Jurassic (Bajocian) |
An early ornithischian of uncertain phylogenetic placement. The type species is I. mollensis. |
|||||
Gen. et sp. nov |
Valid |
Xu et al. |
A troodontid theropod. The type species is J. tengi. |
|||||
Gen. et sp. nov |
In press |
Van der Reest & Currie |
A troodontid theropod. The type species is L. mcmasterae. |
|||||
Gen. et sp. nov |
Valid |
Shen et al. |
A troodontid theropod. The type species is L. curriei. |
|||||
Lucianovenator[345] |
Gen. et sp. nov |
In press |
Martínez & Apaldetti |
Late Triassic (late Norian—Rhaetian) |
A coelophysid theropod. The type species is L. bonoi. |
|||
Gen. et sp. nov |
Valid |
Britt et al. |
A macronarian sauropod. The type species is M. utahensis. |
|||||
Gen. et sp. nov |
Valid |
Carballido et al. |
A titanosaur sauropod belonging to the group Lognkosauria. The type species is P. mayorum. |
|||||
Gen. et sp. nov |
Valid |
Wang et al. |
||||||
Sp. nov |
Valid |
Penkalski & Tumanova |
Late Cretaceous |
A member of Ankylosauridae. |
||||
Gen. et comb. nov |
Disputed |
Yun |
Late Cretaceous (late Campanian-early Maastrichtian) |
A tyrannosauroid theropod; a new genus for "Laelaps" macropus Cope (1868). Considered to be a nomen dubium by Brownstein (2017), who interpreted the fossil material of this taxon as a mixture of ornithomimosaur and tyrannosauroid hindlimb elements.[351] |
||||
Gen. et sp. nov |
Valid |
Averianov & Skutschas |
A lithostrotian titanosaur sauropod. The type species is T. starkovi. |
|||||
Gen. et sp. nov |
Valid |
Carvalho et al. |
Early Cretaceous (Berriasian-early Hauterivian) |
Rio Piranhas Formation |
A basal titanosaur sauropod. The type species is T. leonardii. |
|||
Gen. et sp. nov |
Valid |
Mannion, Allain & Moine |
Calcaires de Clerval Formation |
A brachiosaurid sauropod. The type species is V. damparisensis. |
||||
Gen. et sp. nov |
Wang, You & Wang |
Early Jurassic |
A basal member of Sauropodiformes. The type species is X. chengi. |
|||||
Gen. et sp. nov |
Valid |
Rivera-Sylva et al. |
Late Cretaceous |
A centrosaurine ceratopsian. The type species is Y. mudei. |
||||
Gen. et sp. nov |
Valid |
Xu & Qin |
Possibly Yixian Formation |
A dromaeosaurid theropod. The type species is Z. yangi. |
||||
Gen. et sp. nov |
Valid |
Wang et al. |
Late Cretaceous (Cenomanian) |
A basal member of Hadrosauroidea. The type species is Z. huangi. |
||||
Gen. et sp. nov |
Valid |
Arbour & Evans |
A member of Ankylosauridae belonging to the subfamily Ankylosaurinae. The type species is Z. crurivastator. |
|||||
Birds
Research
- A study on the method allowing estimation of wing loading and aspect ratio in Mesozoic birds and on flight modes that were possible for Mesozoic birds is published by Serrano et al. (2017).[360]
- A study on whether sternal keel length and ilium length were correlated in bird evolution, based on data from extant birds and Mesozoic birds, is published by Zhao, Liu and Li (2017).[361]
- A study on the pectoral girdle morphology of Mesozoic birds and its implications for the evolution of the avian flight musculature (specifically the supracoracoideus muscle) is published by Mayr (2017).[362]
- A study on the morphological characteristics and evolution of the pygostyle and tail feathers in Early Cretaceous birds and closely related non-avian theropods is published by Wang & O'Connor (2017).[363]
- A study estimating values of body weight, wing span and wing area of the trackmakers of the Cretaceous ichnotaxa Archaeornithipus meijidei, Hwangsanipes choughi and Yacoraitichnus avis is published by Tanaka (2017).[364]
- The presence of the atlas rib in Archaeopteryx is reported for the first time by Tsuihiji (2017).[365]
- A tooth attributed to an archaeopterygid bird is described from the Early Cretaceous of France by Louchart & Pouech (2017).[366]
- A well-preserved skull of a juvenile specimen of Sapeornis chaoyangensis is described by Wang et al. (2017), preserving what the authors consider to be the complete dentition.[367]
- A study on the flight capabilities of Sapeornis chaoyangensis is published by Serrano & Chiappe (2017).[368]
- A study on the relationship between the oxygen isotope composition of bird bone phosphate and that of the drinking water of birds, as well as on implications of applying the discovered equation to Confuciusornis and to the Miocene and Pliocene penguins from Peru, is published by Amiot et al. (2017).[369]
- A specimen of Confuciusornis sanctus with tendon- and cartilage-like tissues preserved around its ankle joint (with microstructure evident at the cellular level) is described by Jiang et al. (2017).[370]
- A specimen of Eoconfuciusornis preserving soft-tissue traces of the ovary and wing is described by Zheng et al. (2017).[371]
- A complete description of the skeletal anatomy of the holotype of Chiappeavis magnapremaxillo, the first enantiornithine to preserve a rectricial fan, suggesting that possibly rectricial bulbs were present in basal members of this clade, is published by O'Connor et al. (2017).[372]
- A bohaiornithid enantiornithine specimen with exceptionally preserved feathers, providing information on the colouration of the bird, is described from the Early Cretaceous Jiufotang Formation (China) by Peteya et al. (2017).[373]
- Nearly half of a hatchling of an enantiornithine with preserved soft tissue is described from the Cretaceous Burmese amber by Xing et al. (2017).[374]
- A new specimen of the Early Cretaceous species Archaeorhynchus spathula is described by Wang and Zhou (2017).[375]
- An isolated tibiotarsus of a bird morphologically similar to Ichthyornis is described from the Late Cretaceous (Cenomanian) of Russia by Zelenkov, Averianov & Popov (2017).[376]
- Delphine Angst et al. find Gargantuavis philoinos in Spain, in Laño.[377]
- A study on the species richness, taxonomic diversity and presumed ecological characteristics of the Eocene avifauna of the Messel fossil site is published by Mayr (2017).[378]
- Worthy et al. (2017) provide an overview of the recent advances in avian palaeobiology in New Zealand.[379]
- A review of the Neogene birds of continental Asia is provided by Zelenkov (2017).[380]
- A study on the isolated contour feather from the Eocene Fur Formation (Denmark), indicating presence of melanosomes similar in size and morphology to those of extant parrots, is published by Gren et al. (2017).[381]
- A study on the nuclear genome fragments recovered from extinct elephant birds and a reconstruction of the phylogenomic timetree for the group Palaeognathae is published by Yonezawa et al. (2017).[382]
- Ancient DNA, including mitochondrial DNA and nuclear DNA, is recovered from elephant bird eggshell by Grealy et al. (2017).[383]
- A revision of ratite museum fossil specimens from Argentina, indicating presence of non-rheid ratites in South America during Paleogene and Miocene, is published by Agnolin (2017).[384]
- A study on ancient DNA recovered from late Pleistocene ratite eggshell samples from India is published by Jain et al. (2017), providing the first molecular evidence for the presence of ostriches in India.[385]
- A study on the microstructure of the bones of Vegavis iaai will be published by Garcia Marsà, Agnolín & Novas (2017).[386]
- New skeletal elements (limb bones) of Garganornis ballmanni are described from the Miocene of Italy by Pavia et al. (2017).[387]
- A study establishing criteria for assessing presence or absence of flight ability in fossil anatids, as well as assessing flight abilities of fossil anatids based on the constructed rules, is published by Watanabe (2017).[388]
- Rawlence et al. (2017) interpret extinct New Zealand swan as a member of a distinct swan lineage divergent from modern black swan, based on ancient DNA and osteological data.[389]
- The first Cenozoic avian body fossil from the Korean Peninsula (partial tibiotarsus of a member of the clade Galloanserae more closely related to galliforms than to anseriforms) is described from the Miocene Bukpyeong Formation (South Korea) by Park & Park (2017).[390]
- A revision of non-passeriform birds belonging to the group Neoaves known from the Miocene locality of Polgárdi (Hungary) is published by Zelenkov (2017).[391]
- A study on the diet and trophic position of the South Island adzebill (Aptornis defossor) as indicated by bone stable isotope data is published by Wood et al. (2017).[392]
- Partial tibiotarsus of a member of Cariamae belonging or related to the family Ameghinornithidae is described from the Eocene strata in Inner Mongolia (China) correlative to the Irdin Manha Formation by Stidham & Wang (2017).[393]
- A study on the morphological adaptations linked to substrate preference and locomotory mode in the hindlimbs of phorusrhacids is published by Degrange (2017).[394]
- Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2017).[395]
- Darter fossils are described from the late Pliocene Tatrot Formation (India) by Stidham et al. (2017).[396]
- Incomplete skull of a bald ibis related to the southern bald ibis is described from the Bolt’s Farm Cave System (Cradle of Humankind, Pliocene of South Africa) by Pavia et al. (2017).[397]
- Leg bones of a penguin comparable in size to Anthropornis nordenskjoeldi are described from the mid-Paleocene Waipara Greensand (New Zealand) by Mayr, De Pietri & Scofield (2017).[398]
- An incomplete left tarsometatarsus of a penguin from the Late Eocene La Meseta Formation of Seymour Island, Antarctica is described by Jadwiszczak & Mörs, (2017). they report on a recently collected large-sized tarsometatarsus from this formation that represents a new morphotype. They are convinced that the morphotype corresponds to a new species, but the material is too scarce for a taxonomic act.[399]
- Pedal phalanx of a penguin affected by osteomyelitis will be described from the Eocene of West Antarctica by Jadwiszczak & Rothschild (2017).[400]
- Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2017).[401]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Aprosdokitos [402] |
Gen. et sp. nov |
Valid |
Hospitaleche, Reguero & Santillana |
Eocene |
La Meseta Formation Submeseta III |
A penguin. The type species is A. mikrotero. |
||
Bubo ibericus [403] |
Sp. nov |
Valid |
Meijer et al. |
Early Pleistocene |
A horned owl. |
|||
Chupkaornis [404] |
Gen. et sp. nov |
Valid |
Tanaka et al. |
Kashima Formation |
A member of Hesperornithiformes. The type species is C. keraorum. |
|||
Crexica [405] |
Gen. et sp. nov |
In press |
Zelenkov, Panteleyev & De Pietri |
Late Miocene |
A rail. Genus includes new species C. crexica. |
|||
Cruralispennia [406] |
Gen. et sp. nov |
Valid |
Wang et al. |
Early Cretaceous (130.7 Myr ago) |
A member of Enantiornithes. The type species is C. multidonta. |
|||
Diomedavus [407] |
Gen. et sp. nov |
Valid |
Mayr & Goedert |
Late Oligocene |
A stem-albatross. Genus includes new species D. knapptonensis. |
|||
Garrdimalga [408] |
Gen. et sp. nov |
Valid |
Shute, Prideaux & Worthy |
A megapode. The type species is G. mcnamarai. |
||||
Latagallina [408] |
Gen. et comb. et sp. nov |
Valid |
Shute, Prideaux & Worthy |
Early to Late Pleistocene |
A megapode. The type species is "Progura" naracoortensis van Tets (1974); genus also includes new species L. olsoni. |
|||
Leucocarbo septentrionalis [409] |
Sp. nov |
Valid |
Rawlence et al. |
|||||
Macranhinga ameghinoi [410] |
Sp. nov |
Valid |
Diederle & Agnolin |
Miocene (Colloncuran) |
A darter. |
|||
Miohypotaenidia [405] |
Gen. et sp. nov |
In press |
Zelenkov, Panteleyev & De Pietri |
Late Miocene |
A rail. Genus includes new species M. tanaisensis. |
|||
Sp. nov |
Valid |
Noriega et al. |
Late Miocene |
A member of the family Rheidae. |
||||
Piscivorenantiornis [412] |
Gen. et sp. nov |
Valid |
Wang & Zhou |
A member of Enantiornithes. The type species is P. inusitatus. |
||||
Progura campestris [408] |
Sp. nov |
Valid |
Shute, Prideaux & Worthy |
A megapode. |
||||
Pyrrhula crassa [413] |
Sp. nov |
Valid |
Rando et al. |
A bullfinch. |
||||
Tsidiiyazhi [414] |
Gen. et sp. nov |
Valid |
Ksepka, Stidham & Williamson |
Early Paleocene |
A stem-mousebird belonging to the family Sandcoleidae. The type species is T. abini. |
|||
Vanolimicola [415] |
Gen. et sp. nov |
Valid |
Early Eocene |
A bird of uncertain phylogenetic placement with a shorebird-like beak. The type species is V. longihallucis. |
||||
Pterosaurs
Research
- A study on the body size evolution in pterosaurs, especially on whether Bergmann's rule can be shown to apply to pterosaurs, is published by Villalobos et al. (2017).[416]
- A study on the differences between soft-tissue structure and attachments articulating skeletal joints of Rhamphorhynchus and Pterodactylus as indicated by known skeletons of members of both taxa is published by Beardmore, Lawlor & Hone (2017).[417]
- Pterosaur manus tracks are described from the Late Cretaceous of Morocco by Masrour et al. (2017).[418]
- A study on the systematic relationships of Parapsicephalus purdoni is published by O'Sullivan & Martill (2017).[419]
- A study on the differences in the anatomy of the skull crests in wukongopterid pterosaur specimens and its implications for the function of these crests is published by Cheng et al. (2017).[420]
- Isolated teeth belonging to indeterminate members of the clade Anhangueria are described from the Early Cretaceous (Albian) Griman Creek Formation (Australia) by Brougham, Smith & Bell (2017).[421]
- A study on the morphological diversity of the skulls of anhanguerids from the Lower Cretaceous Romualdo Formation (Brazil) and its implications for the taxonomy of members of the genus Anhanguera is published by Pinheiro & Rodrigues (2017).[422]
- A redescription of the holotype specimen of Dawndraco kanzai is published by Martin-Silverstone et al. (2017), who consider this species to be a junior synonym of Pteranodon sternbergi.[423]
- Partial pterosaur pelvis (tentatively referred to Azhdarchidae) is described from the Upper Cretaceous (Campanian) Dinosaur Park Formation (Canada) by Funston, Martin-Silverstone & Currie (2017), representing the first described pelvic material from a North American azhdarchid.[424]
- A description of a neck vertebra of a probable member of the genus Hatzegopteryx recovered from the Late Cretaceous (Maastrichtian) Sebeş Formation (Romania) and a study on the implications of the vertebra's anatomy for the neck length and ecology of Hatzegopteryx is published by Naish & Witton (2017).[425]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Valid |
Vidovic & Martill |
Mörnsheim Limestone Formation |
A pterodactyloid pterosaur; a new genus for "Germanodactylus" rhamphastinus (Wagner, 1851). |
||||
Gen. et sp. nov |
Wang et al. |
Late Jurassic |
A non-pterodactyloid monofenestratan. The type species is D. zhengi. |
|||||
Gen. et sp. nov |
Valid |
Zhou et al. |
Late Jurassic (Oxfordian) |
A member of Ctenochasmatidae. The type species is L. primus. |
||||
Gen. et comb. nov |
In press |
Rigal, Martill & Sweetman |
Early Cretaceous (late Valanginian or early Hauterivian) |
A pterodactyloid pterosaur; a new genus for "Pterodactylus" sagittirostris Owen (1874). |
||||
Other archosauriforms
Research
- Diandongosuchus fuyuanensis, originally thought to be a member of Poposauroidea, is reinterpreted as a basal phytosaur by Stocker et al. (2017).[430]
- A study on the morphology of the braincase of the phytosaur Wannia scurriensis will be published by Lessner & Stocker (2017).[431]
- A study on the microstructure of the long bones (femur and tibiae) of Lewisuchus admixtus will be published by Garcia Marsà, Agnolín & Novas (2017).[432]
- A study on the morphological differences between the femora of Dromomeron romeri and Tawa hallae is published by Müller (2017), who rejects the hypothesis that the two species are synonymous.[433]
- A study on the phylogenetic relationships of Pisanosaurus mertii will be published by Agnolín & Rozadilla (2017), who interpret the taxon as a likely silesaurid.[434]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Nesbitt et al. |
An early member of Avemetatarsalia belonging to the newly named group Aphanosauria. The type species is T. rhadinus. |
|||||
Other reptiles
Research
- A study on the red blood cell size in fossil tetrapods, especially archosauromorph reptiles and synapsids, as indicated by bone microstructure, is published by Huttenlocker & Farmer (2017).[436]
- A study on the diet of the mesosaurs from the Early Permian Irati Formation (Brazil) and Mangrullo Formation (Uruguay) is published by Da Silva et al. (2017).[437]
- New cranial material of Colobomycter pholeter, revealing previously unknown aspects of the anatomy of the skull, is described by Macdougall et al. (2017).[438]
- A study on the bone histology of Permian pareiasaurs from South Africa and its implications for the lifestyle and growth patterns of pareiasaurs is published by Canoville & Chinsamy (2017).[439]
- A study on rates of morphological evolution in members of the family Captorhinidae and on whether changes of evolutionary rates coincided with shifts in diet is published by Brocklehurst (2017).[440]
- Partial maxillary toothplate of an early reptile, probably a juvenile specimen of Labidosaurikos meachami, is described from the Lower Permian Arroyo Formation (Texas, United States) by Jung & Sumida (2017).[441]
- Description of a juvenile specimen Eusaurosphargis dalsassoi from the Middle Triassic (Ladinian) Upper Prosanto Formation (Switzerland), interpreted as most likely to be a terrestrial animal, and a study on the phylogenetic relationships of the species is published by Scheyer et al. (2017).[442]
- A restudy of Arctosaurus osborni is published by Sues (2017), who considers this species to be an archosauromorph reptile, possibly an allokotosaurian.[443]
- A specimen of Dinocephalosaurus containing an embryo, providing evidence of live birth in this taxon, is described from the Middle Triassic of China by Liu et al. (2017).[444]
- A well-preserved, curled-up skeleton of an embryo of a marine protorosaur related to Dinocephalosaurus is described from the Middle Triassic Guanling Formation (China) by Li, Rieppel & Fraser (2017).[445]
- A study on the histology of the postcranial bones of Tanystropheus and Macrocnemus, and its implications for the ecology and mode of growth in these taxa, is published by Jaquier & Scheyer (2017).[446]
- Diverse archosauromorph tracks are described from the Early Triassic (Olenekian) of the Catalan Pyrenees by Mujal et al. (2017), who name a new ichnotaxon Prorotodactylus mesaxonichnus described on the basis of footprints which might have been left by an euparkeriid or a similar basal archosauriform.[447]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Pectodens [448] |
Gen. et sp. nov |
In press |
Li et al. |
A long-necked archosauromorph reptile of uncertain phylogenetic placement, possibly a member of Protorosauria. The type species is P. zhenyuensis. |
||||
Synapsids
Non-mammalian synapsids
Research
- Phreatophasma aenigmaticum is argued to be a member of Caseidae by Brocklehurst & Fröbisch (2017).[449]
- New fossil material of the caseid Alierasaurus ronchii is described from the Permian deposits of Cala del Vino Formation (Sardinia, Italy) by Romano et al. (2017).[450]
- A study on the histology of the humeri of Ophiacodon, revealing the existence of fibrolamellar bone in the postcranial bones of this taxon, is published by Shelton & Sander (2017).[451]
- A study on the body size evolution of edaphosaurids and sphenacodontids is published by Brocklehurst & Brink (2017).[452]
- A study on the evolution of the endothermy in non-mammalian therapsids as indicated by oxygen isotope composition of bone and tooth phosphate in Permian and Triassic therapsids is published by Rey et al. (2017).[453]
- A study on the morphology of the bony labyrinth of five biarmosuchian specimens is published by Benoit et al. (2017).[454]
- A skull of a juvenile specimen of Anteosaurus magnificus is described from the Permian Abrahamskraal Formation (South Africa) by Kruger, Rubidge & Abdala (2017).[455]
- A study on the anatomy of the skull of Moschops capensis, revealing adaptations of the central nervous system related to head-to-head fighting, is published by Benoit et al. (2017).[456]
- A study on the resting metabolic rate in Moghreberia nmachouensis is published by Olivier et al. (2017).[457]
- A study on the contents of the depression known as the “unossified zone” in the brain cavity of Diictodon feliceps is published by Laaß, Schillinger & Kaestner (2017).[458]
- A structure analogous to the mammalian neocortex is reported in Kawingasaurus fossilis by Laaß & Kaestner (2017).[459]
- A detailed description of the braincase of two gorgonopsian specimens (a probable specimen of Aelurosaurus wilmanae from South Africa and a possible specimen of Arctognathus? nasuta from Tanzania) is published by Araújo et al. (2017).[460]
- A study on the anatomy of the teeth and maxilla of Euchambersia mirabilis and its implications for the hypothesis that venom gland were present in this species is published by Benoit et al. (2017).[461]
- A redescription and a study on the phylogenetic relationships of Silphoictidoides ruhuhuensis is published by Maisch (2017), who considers the species to be a basal member of Baurioidea.[462]
- A study on the internal morphology of the interorbital region of the skull of basal cynodonts, including rarely fossilized orbitosphenoid elements, is published by Benoit et al. (2017).[463]
- A study on the anatomy of the nasal regions of the non-mammalian cynodonts Massetognathus, Probainognathus and Elliotherium, comparing it to the nasal regions of fossil mammaliaforms and extant mammals, is published by Crompton et al. (2017).[464]
- A survey of the aggregations of the specimens of Galesaurus planiceps and Thrinaxodon liorhinus, with emphasis on whether the aggregations consist of individuals of similar age or representing a mixture of different age classes, is published by Jasinoski & Abdala (2017).[465]
- A study on the ontogenetic changes in the skull and mandible of Galesaurus planiceps is published by Jasinoski & Abdala (2017).[466]
- A description of the anatomy of the postcranial skeleton of Tritylodon longaevus is published by Gaetano, Abdala & Govender (2017).[467]
- Cast of a burrow which was probably made by a tritheledontid cynodont is described from the Early Jurassic upper Elliot Formation (South Africa) by Bordy et al. (2017).[468]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Alemoatherium[469] |
Gen. et sp. nov |
Valid |
Martinelli et al. |
Late Triassic (late Carnian) |
A cynodont belonging to the group Prozostrodontia. The type species is A. huebneri. |
|||
Aleodon cromptoni[470] |
Sp. nov |
Valid |
Martinelli et al. |
A cynodont belonging to the family Chiniquodontidae. |
||||
Gen. et sp. nov |
Valid |
Kammerer & Smith |
Late Permian |
Teekloof Formation |
A dicynodont belonging to the family Geikiidae. The type species is B. phylloxyron. |
|||
Dalongkoua[472] |
Gen. et sp. nov |
Valid |
Liu & Abdala |
Late Permian |
Guodikeng Formation |
A therocephalian. The type species is D. fuae. |
||
Nuurtherium[473] |
Gen. et sp. nov |
Valid |
Velazco, Buczek & Novacek |
Ulan Malgait Sequence |
A tritylodontid cynodont. The type species is N. baruunensis. |
|||
Parasuminia[474] |
Gen. et sp. nov |
Valid |
Kurkin |
Permian (Severodvinian) |
An anomodont belonging to the family Galeopidae. Genus includes new species P. ivakhnenkoi. |
|||
Sp. nov |
Valid |
Melo, Martinelli & Soares |
Santa Maria Supersequence |
|||||
Shartegodon[473] |
Gen. et sp. nov |
Valid |
Velazco, Buczek & Novacek |
Ulan Malgait Sequence |
A tritylodontid cynodont. The type species is S. altai. |
|||
Mammals
Other animals
Research
- A study on a succession of Ediacaran to Cambrian fossil assemblages from the eastern Siberian Platform (Russia) is published by Zhu et al. (2017), who argue that so-called Ediacaran and earliest Cambrian skeletal biotas overlap without notable biotic turnover.[476]
- A study on the Ediacaran taxon Parvancorina minchami, indicating that this animal was capable of performing rheotaxis, is published by Paterson et al. (2017).[477]
- A study on the water flow around the body of the Ediacaran taxon Parvancorina and its implications for the feeding mode and mobility of this animal is published by Darroch et al. (2017).[478]
- A study on the morphology, growth and development of Dickinsonia costata is published by Evans, Droser & Gehling (2017).[479]
- Description of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian Carrara Formation (California, United States), tentatively assigned to the genus Discophyllum (an animal of uncertain phylogenetic placement, might be a chondrophore or an eldoniid) is published by Lieberman et al. (2017).[480]
- Specimens of Cloudina associated with microbial mat textures are reported from the Ediacaran Tamengo Formation (Brazil) by Becker-Kerber et al. (2017).[481]
- A diverse fauna dominated by sponges living immediately after the Hirnantian extinction is described from China by Botting et al. (2017).[482]
- A diverse Early Triassic (Olenekian) marine fauna, including leptomitid protomonaxonid sponges (a group otherwise known only from Cambrian and Ordovician), new forms of the crinoid order Holocrinida displaying advanced characters, a probable basal ophiodermatid and gladius-bearing coleoids (previously unknown in Early Triassic strata) is reported from Paris (Idaho, United States) by Brayard et al. (2017).[483]
- A study on the muscle anatomy of Pambdelurion whittingtoni is published by Young & Vinther (2017).[484]
- Cambrian species Zhenghecaris shankouensis, originally classified as a bivalved arthropod, is reinterpreted as a member of Radiodonta by Zeng et al. (2017).[485]
- A study on the anatomy of the Cambrian hyolith Haplophrentis, as well as on the phylogenetic relationships of the hyoliths, is published by Moysiuk, Smith & Caron (2017).[486]
- A study on the phylogenetic relationships of Tullimonstrum gregarium, challenging its interpretation as a vertebrate, is published by Sallan et al. (2017).[487]
- A study on the slab with a dense aggregation of members of the species Banffia constricta recovered from the Cambrian Burgess Shale (Canada) and its implications for life habits of the animal will be published by Chambers & Brandt (2017).[488]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Acoelia discontinua[489] |
Sp. nov |
Valid |
Wu |
Permian (Changhsingian) |
A calcareous sponge belonging to the order Inozoa and the family Acoeliidae. |
|||
Aeroretiolites[490] |
Gen. et sp. nov |
Valid |
Melchin, Lenz & Kozłowska |
Silurian |
A graptolite. Genus includes new species A. cancellatus. |
|||
Sp. nov |
Valid |
Yun, Zhang & Li |
Chengjiang Lagerstätte |
|||||
Andiprion[492] |
Gen. et sp. nov |
Valid |
Hints et al. |
A polychaete described on the basis of scolecodonts. Genus includes new species A. paxtonae. |
||||
Gen. et sp. nov |
In press |
Yang et al. |
A sponge belonging to the order Verongida and the family Vauxiidae. Genus includes new species A. sinensis. |
|||||
Biskolites[495] |
Gen. et sp. nov |
Valid |
Valent, Fatka & Marek |
Buchava Formation |
A member of Hyolitha. Genus includes new species B. iactans. |
|||
Gen. et sp. nov |
In press |
Briggs & Caron |
An arrow worm. The type species is C. praetermissus. |
|||||
Sp. nov |
Valid |
Pates & Daley |
Burgess Shale |
A member of Radiodonta. |
||||
Sp. nov |
Valid |
Pates & Daley |
A member of Radiodonta. |
|||||
Sp. nov |
Valid |
Cai et al. |
Late Ediacaran |
|||||
Sp. nov |
Valid |
Cai et al. |
Late Ediacaran |
|||||
Codositubulus[499] |
Gen. et sp. nov |
In press |
Gámez Vintaned et al. |
A tubicolous animal of uncertain phylogenetic placement. The type species is C. grioensis. |
||||
Conciliospongia[500] |
Gen. et sp. nov |
Botting, Zhang & Muir |
Late Ordovician |
Wenchang Formation |
A stem-demosponge of uncertain phylogenetic placement. The type species is C. anjiensis. |
|||
Corallistes campanensis[501] |
Sp. nov |
Valid |
Świerczewska-Gładysz |
Late Cretaceous (early Campanian) |
A lithistid demosponge belonging to the family Corallistidae. |
|||
Cretacimermis aphidophilus[502] |
Sp. nov |
Valid |
A nematode belonging to the family Mermithidae. |
|||||
Eolorica[503] |
Gen. et sp. nov |
Valid |
Harvey & Butterfield |
Cambrian (Furongian) |
A member of the total group of Loricifera. The type species is E. deadwoodensis. |
|||
Eorograptus spirifer[490] |
Sp. nov |
Valid |
Melchin, Lenz & Kozłowska |
Silurian |
A graptolite. |
|||
Feiyanella[504] |
Gen. et sp. nov |
In press |
Han et al. |
Earliest Cambrian |
Kuanchuanpu Formation |
A Cloudina-like tubular microfossil. The type species is F. manica. |
||
Geoditesia jordaniensis[505] |
Sp. nov |
Valid |
Ungureanu, Ahmad & Farouk |
A sponge. |
||||
Glomerula gemmellaroi[506] |
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
“Pietra di Salomone” Limestone |
A polychaete belonging to the family Sabellidae, a species of Glomerula. |
||
Labechia yeongwolense[507] |
Sp. nov |
Valid |
Jeon et al. |
Yeongheung Formation |
||||
Lepidocoleus kuangguoduni[508] |
Sp. nov |
Valid |
Gügel et al. |
Nandan Formation |
A machaeridian. |
|||
‘Linevitus’ guizhouensis[509] |
Sp. nov |
Valid |
Sun et al. |
Cambrian Stage 4 |
A member of Hyolitha. |
|||
Sp. nov |
In press |
Wotte & Sundberg |
A lobopodian. |
|||||
Sp. nov |
In press |
Wotte & Sundberg |
A lobopodian. |
|||||
Mughanniyyum[505] |
Gen. et sp. nov |
Valid |
Ungureanu, Ahmad & Farouk |
A sponge. Genus includes new species M. hanium. |
||||
Multiconotubus[498] |
Gen. et sp. nov |
Valid |
Cai et al. |
Late Ediacaran |
A Cloudina-like fossil. Genus includes new species M. chinensis. |
|||
Neophrissospongia kacperskii[501] |
Sp. nov |
Valid |
Świerczewska-Gładysz |
Late Cretaceous (early Campanian) |
A lithistid demosponge belonging to the family Corallistidae. |
|||
Gen. et sp. nov |
Valid |
Caron & Aria |
A lobopodian belonging to the family Luolishaniidae. The type species is O. cribratus. |
|||||
Pachinion canaliculatum[501] |
Sp. nov |
Valid |
Świerczewska-Gładysz |
Late Cretaceous (early Campanian) |
A lithistid demosponge belonging to the family Corallistidae. |
|||
Sp. nov |
Valid |
Candela & Crighton |
Silurian (Telychian) |
Wether Law Linn Formation |
A machaeridian. |
|||
Propomatoceros permianus[506] |
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
“Pietra di Salomone” Limestone |
A polychaete belonging to the family Serpulidae, a species of Propomatoceros. |
||
Pseudoretiolites hyrichus[490] |
Sp. nov |
Valid |
Melchin, Lenz & Kozłowska |
Silurian |
A graptolite. |
|||
Pyrgopolon (Septenaria) cenomanensis[513] |
Sp. nov |
Valid |
Kočí, Jäger & Morel |
Late Cretaceous (Cenomanian) |
A polychaete belonging to the family Serpulidae. |
|||
Pyrgopolon (Turbinia?) gaiae[506] |
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
“Pietra di Salomone” Limestone |
A polychaete belonging to the family Serpulidae, a species of Pyrgopolon. |
||
Radiofibrosclera[489] |
Gen. et sp. nov |
Valid |
Wu |
Permian (Changhsingian) |
A sclerosponge. The type species is R. laibinensis. |
|||
Gen. et sp. nov |
Valid |
Han et al. |
Earliest Cambrian |
An early deuterostome related to vetulicolians and vetulocystids. The type species is S. coronarius. |
||||
“Serpula” distefanoi[506] |
Sp. nov |
Valid |
Sanfilippo in Sanfilippo et al. |
Permian |
“Pietra di Salomone” Limestone |
A polychaete belonging to the family Serpulidae. |
||
Serpula? pseudoserpentina[513] |
Sp. nov |
Valid |
Kočí, Jäger & Morel |
Late Cretaceous (Cenomanian) |
A polychaete belonging to the family Serpulidae. |
|||
Silicunculus saaqqutit[515] |
Sp. nov |
In press |
Peel |
A sponge. |
||||
Singuuriqia[516] |
Gen. et sp. nov |
Valid |
Peel |
Sirius Passet Lagerstätte |
A member of Priapulida. Genus includes new species S. simoni. |
|||
Sp. nov |
In press |
Kimmig, Strotz & Lieberman |
||||||
Tauricornicaris[485] |
Gen. et 2 sp. nov |
Valid[518] |
Zeng et al. |
Early Cambrian |
Chengjiang Lagerstätte |
A member of Radiodonta, possibly a member of Hurdiidae. Genus includes new species T. latizonae and T. oxygonae. |
||
Thoracospongia lacrimiformis[515] |
Sp. nov |
In press |
Peel |
A sponge. |
||||
Tianzhushanella tolli[519] |
Sp. nov |
Valid |
Kouchinsky et al. |
Medvezhya Formation |
A member of Tianzhushanellidae (a group of animals of uncertain phylogenetic placement, possibly stem-brachiopods). |
|||
Websteroprion[520] |
Gen. et sp. nov |
Valid |
Eriksson, Parry & Rudkin |
An eunicidan polychaete of uncertain phylogenetic placement. The type species is W. armstrongi. |
||||
Other organisms
Research
- Eoarchean (over 3,700 million years old) organic residues are reported from Isua, West Greenland by Hassenkam et al. (2017).[521]
- Putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old are described from the Nuvvuagittuq belt (Quebec, Canada) by Dodd et al. (2017).[522]
- Potential biosignatures, including stromatolites, are reported from the newly discovered rocks recovered from ca. 3.48 billion years old Dresser Formation (Pilbara Craton, Australia) by Djokic et al. (2017).[523]
- Lenticular structures known from the ∼3.4 Ga Kromberg Formation (Kaapvaal Craton, South Africa) are interpreted as organic Archean microfossils by Oehler et al. (2017).[524]
- Fossils of early eukaryotes Tappania plana, Dictyosphaera macroreticulata and Valeria lophostriata are described from the early Mesoproterozoic Greyson Formation (Belt Supergroup, Montana, United States) by Adam et al. (2017).[525]
- 2.4-billion-year-old filamentous fossils forming mycelium-like structures, considered to be either the oldest known fungi or members of an unknown branch of fungus-like mycelial organisms, are described from the Ongeluk Formation (South Africa) by Bengtson et al. (2017).[526]
- A study testing the suggested link between the appearance of large body size in rangeomorphs (organisms of uncertain phylogenetic placement, likely animals) in the Ediacaran and postulated regional increases in environmental nutrient levels is published by Hoyal Cuthill & Conway Morris (2017).[527]
- A study on the internal morphology of Rangea from the Nama Group (Namibia), based on data obtained using X-ray micro-computed tomography, will be published by Sharp et al. (2017).[528]
- Four forms of modern-looking gilled mushrooms, including two taxa belonging to the family Marasmiaceae, are described from the Cretaceous Burmese amber by Cai et al. (2017).[529]
New taxa
Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Adendorfia[530] |
Gen. et sp. nov |
Valid |
Worobiec et al. |
Miocene |
A fungus, probably a member of Chaetomiaceae. Genus includes new species A. miocenica. |
|||
Amsassia argentina[531] |
Sp. nov |
Valid |
Carrera, Astini & Gomez |
Early Ordovician |
La Silla Formation |
A coral-like organism of uncertain phylogenetic placement. |
||
Blastanosphaira[532] |
Gen. et sp. nov |
Valid |
Javaux & Knoll |
Mainoru Formation |
A possible eukaryotic microorganism of uncertain phylogenetic placement. The type species is B. kokkoda. |
|||
Bonniea makrokurtos[533] |
Sp. nov |
Valid |
Cohen, Irvine & Strauss |
Callison Lake Formation |
A vase-shaped microfossil. |
|||
Braarudosphaera pseudobatilliformis[534] |
Sp. nov |
Valid |
Alves, Lima & Shimabukuro |
Early Cretaceous (Aptian) |
A haptophyte belonging to the family Braarudosphaeraceae. |
|||
Cephalothecoidomyces[530] |
Gen. et sp. nov |
Valid |
Worobiec et al. |
Neogene |
A fungus, probably a member of Cephalothecaceae. Genus includes new species C. neogenicus. |
|||
Cobios[535] |
Gen. et sp. nov |
Valid |
Du et al. |
A red alga. The type species is Cobios rubo. |
||||
Curviacus[536] |
Gen. et sp. nov |
In press |
Shen et al. |
A benthic modular organism consisting of serially arranged and crescent-shaped chambers. Genus includes new species C. ediacaranus. |
||||
Cycliocyrillium rootsi[533] |
Sp. nov |
Valid |
Cohen, Irvine & Strauss |
Callison Lake Formation |
A vase-shaped microfossil. |
|||
Denaricion[537] |
Gen. et sp. nov |
Valid |
Bengtson in Bengtson et al. |
~1.6 billion years ago |
An organism of uncertain phylogenetic placement, might be an alga or prokaryote. Genus includes new species D. mendax. |
|||
Fissumella[538] |
Gen. et sp. nov |
Valid |
Cruz-Abad et al. |
A foraminifer. Genus includes new species F. motolae. |
||||
Gigantosphaeridium floccosum[539] |
Sp. nov |
Valid |
Agić, Moczydłowska & Yin |
Early Mesoproterozoic |
Ruyang Group |
A microfossil. |
||
Gondwanagaricites[540] |
Gen. et sp. nov |
Valid |
Heads, Miller & Crane in Heads et al. |
A gilled mushroom. Genus includes new species G. magnificus. |
||||
Hagenococcus[541] |
Gen. et sp. nov |
Valid |
Krings et al. |
Early Devonian |
A microorganism of uncertain phylogenetic placement, most likely an alga with affinities to the Chlorophyta or Streptophyta. Genus includes new species H. aggregatus. |
|||
Limeta[542] |
Gen. et sp. nov |
Valid |
Morais, Fairchild & Lahr in Morais et al. |
Urucum Formation |
A vase-shaped microfossil. Genus includes new species L. lageniformis. |
|||
Nannoconus troelsenii[534] |
Sp. nov |
Valid |
Alves, Lima & Shimabukuro |
Early Cretaceous (Aptian) |
A haptophyte belonging to the family Nannoconaceae. |
|||
Palaeoamphora[542] |
Gen. et sp. nov |
Valid |
Morais, Fairchild & Lahr in Morais et al. |
Urucum Formation |
A vase-shaped microfossil. Genus includes new species P. urucumense. |
|||
Palaeostromatus[543] |
Gen. et sp. nov |
Valid |
Dentzien-Dias, Poinar & Francischini |
Permian (Guadalupian) |
An actinomycete. Genus includes new species P. diairetus. |
|||
Paleohaimatus[544] |
Gen. et sp. nov |
Valid |
Eocene-Miocene |
A member of Apicomplexa belonging to the group Piroplasmida. Genus includes new species P. calabresi. |
||||
Pentadinium darmirae[545] |
Sp. nov |
Valid |
Slimani & Ţabără in Ţabără et al. |
Izvor Formation |
A dinoflagellate belonging to the group Gonyaulacales and the family Gonyaulacaceae. |
|||
Gen. et sp. nov |
Valid |
Bengtson in Bengtson et al. |
~1.6 billion years ago |
An alga of uncertain phylogenetic placement. Genus includes new species R. chitrakootensis. |
||||
Ramathallus[537] |
Gen. et sp. nov |
Valid |
Sallstedt in Bengtson et al. |
~1.6 billion years ago |
A possible stem-florideophycean red alga. Genus includes new species R. lobatus. |
|||
Spearlithus[546] |
Gen. et 12 sp. nov |
Valid |
Da Gama |
A calcareous nannofossil of uncertain phylogenetic placement. |
||||
Synaptomitus[547] |
Gen. et sp. nov |
Valid |
Poinar |
Eocene to Miocene |
A fungus belonging to the group Basidiomycota. Genus includes new species S. orchiphilus. |
|||
Synsphaeridium parahioense[548] |
Sp. nov |
In press |
Yin et al. |
An acritarch. |
||||
Tarburina[549] |
Gen. et sp. nov |
In press |
Schlagintweit, Rashidi & Barani |
Late Cretaceous (late Maastrichtian) |
Tarbur Formation |
A foraminifer. Genus includes new species T. zagrosiana. |
||
Taruma[542] |
Gen. et sp. nov |
Valid |
Morais, Fairchild & Lahr in Morais et al. |
Urucum Formation |
A vase-shaped microfossil. Genus includes new species T. rata. |
|||
Windipila[550] |
Gen. et sp. nov |
Valid |
Krings & Harper |
Early Devonian |
A fungus described on the basis of a reproductive unit. Genus includes new species W. spinifera. |
|||
Xiaohongyuia[551] |
Gen. et sp. nov |
Valid |
Shi & Feng in Shi et al. |
Late Paleoproterozoic |
Dahongyu Formation |
A probable eukaryotic microfossil. Genus includes new species X. sinica. |
||
General paleontology
Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.
- A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).[552]
- A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, indentifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).[553]
- A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).[554]
- A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).[555]
- A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).[556]
- A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).[557]
- A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).[558]
- A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).[559]
- A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).[560]
- Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.[561]
- A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).[562]
- Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.[563]
- A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).[564]
- Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.[565]
References
- ↑ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- ↑ Qiang Ou; Jian Han; Zhifei Zhang; Degan Shu; Ge Sun; Georg Mayer (2017). "Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1701650114.
- ↑ Aaron D. Sappenfield; Lidya G. Tarhan; Mary L. Droser (2017). "Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach?". Geological Magazine. 154 (4): 859–874. doi:10.1017/S0016756816000443.
- ↑ Jian Han; Guoxiang Li; Xing Wang; Xiaoguang Yang; Junfeng Guo; Osamu Sasaki; Tsuyoshi Komiya (2017). "Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)". Journal of Paleontology. in press. doi:10.1017/jpa.2017.10.
- ↑ Jerzy Dzik; Andrzej Baliński; Yuanlin Sun (2017). "The origin of tetraradial symmetry in cnidarians". Lethaia. 50 (2): 306–321. doi:10.1111/let.12199.
- ↑ Guangxu Wang; Renbin Zhan; Bing Huang; Ian G. Percival (2017). "Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution". Geological Magazine. 154 (4): 829–836. doi:10.1017/S0016756816000406.
- ↑ Yong Yi Zhen; Guangxu Wang; Ian G. Percival (2017). "Conodonts and tabulate corals from the Upper Ordovician Angullong Formation of central New South Wales, Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (2): 141–168. doi:10.1080/03115518.2016.1185869.
- 1 2 3 Jerzy Fedorowski (2017). "Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 5. The Family Bothrophyllidae Fomichev, 1953". Acta Geologica Polonica. 67 (2): 249–298. doi:10.1515/agp-2017-0013.
- ↑ John S. Peel (2017). "A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia". Journal of Paleontology. in press. doi:10.1017/jpa.2017.49.
- ↑ Wei-hua Liao; Xue-ping Ma (2017). "Devonian corals from Zhaotong, NE Yunnan (2)——Givetian rugose corals". Acta Palaeontologica Sinica. 56 (1): 68–81.
- 1 2 3 4 5 Galina K. Melnikova; Ewa Roniewicz (2017). "Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia". Palaeoworld. 26 (1): 124–148. doi:10.1016/j.palwor.2016.01.001.
- ↑ Bernard Lathuilière; Sylvain Charbonnier; Jean-Michel Pacaud (2017). "Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals" (PDF). Zitteliana. 89: 133–150. ISBN 978-3-946705-00-0.
- ↑ Sergio Rodríguez; Ian D. Somerville; Ismail Said (2016). "New species of the rugose coral genus Lithostrotion Fleming in the upper Viséan from the Azrou-Khenifra Basin (Morocco)" (PDF). Spanish Journal of Palaeontology. 32 (1): 27–34.
- ↑ Stephen D. Cairns (2017). "New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic". Journal of Paleontology. 91 (3): 407–416. doi:10.1017/jpa.2016.83.
- ↑ Yunhuan Liu; Tiequan Shao; Huaqiao Zhang; Qi Wang; Yanan Zhang; Cheng Chen; Yongchun Liang; Jiaqi Xue (2017). "A new scyphozoan from the Cambrian Fortunian Stage of South China". Palaeontology. 60 (4): 511–518. doi:10.1111/pala.12306.
- ↑ Shuji Niko; Yousuke Ibaraki; Jun-ichi Tazawa (2017). "Middle Devonian tabulate corals from the Kotaki area, Niigata Prefecture, central Japan". Science reports of Niigata University. (Geology). 32: 25–31.
- ↑ Andrzej Baliński; Yuanlin Sun (2017). "Early Ordovician black corals from China". Bulletin of Geosciences. 92 (1): 1–12. doi:10.3140/bull.geosci.1632.
- ↑ Chang-Min Yu (2017). "Restudy of the Early Devonian rugose coral Xystriphylloides from South China". Palaeoworld. in press. doi:10.1016/j.palwor.2017.06.001.
- 1 2 Andrej Ernst; Daniel Vachard (2017). "Middle Pennsylvanian bryozoans of Cerros de Tule, Sonora, Mexico". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 11–38. doi:10.1127/njgpa/2017/0660.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Emanuela Di Martino; Paul D. Taylor; Roger W. Portell (2017). "Bryozoans from the lower Miocene Chipola Formation, Calhoun County, Florida, USA". Bulletin of the Florida Museum of Natural History. 53 (4): 97–200.
- ↑ Andrej Ernst; Zoya Tolokonnikova; Edouard Poty; Bernard Mottequin (2017). "A bryozoan fauna from the Mississippian (Tournaisian and Viséan) of Belgium". Geobios. 50 (2): 105–121. doi:10.1016/j.geobios.2017.02.002.
- 1 2 3 4 5 6 7 8 9 Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2017). "Fenestrate Bryozoa of the Moniello Formation (Lower-Middle Devonian, NW Spain)". Bulletin of Geosciences. 92 (2): 153–183. doi:10.3140/bull.geosci.1668.
- 1 2 3 4 Emanuela Di Martino; Paul D. Taylor; Laura J. Cotton; Paul N. Pearson (2017). "First bryozoan fauna from the Eocene–Oligocene transition in Tanzania". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1284163.
- 1 2 Andrej Ernst; Peter Königshof; Ali Bahrami; Mehdi Yazdi; Iliana Boncheva (2017). "A Late Devonian (Frasnian) bryozoan fauna from central Iran". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-016-0269-5.
- 1 2 L. A. Viskova; A. V. Pakhnevich (2017). "Bryozoan (Stenolaemata) records from the upper Callovian (Middle Jurassic) of the Moscow region". Paleontological Journal. 51 (3): 258–263. doi:10.1134/S0031030117030121.
- ↑ M. A. Sonar; R. V. Pawar (2017). "Some fossil species of catenicellid and schizoporelloid bryozoans from the Cenozoic sediments of western Kachchh, Gujarat, India". Journal of the Palaeontological Society of India. 62 (1): 31–38.
- ↑ Zoya Tolokonnikova; Jiří Kalvoda; Tomáš Kumpan (2017). "An early Tournaisian (Mississippian) bryozoan fauna from the Moravian Karst (Rhenohercynian Zone, Czech Republic)". Geobios. in press. doi:10.1016/j.geobios.2017.06.006.
- 1 2 3 Kamil Zágoršek; Mehdi Yazdi; Ali Bahrami (2017). "Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 109–118. doi:10.1127/njgpa/2017/0631.
- 1 2 Paul D. Taylor; Silviu O. Martha (2017). "Cenomanian cheilostome bryozoans from Devon, England". Annales de Paléontologie. 103 (1): 19–31. doi:10.1016/j.annpal.2016.11.002.
- 1 2 3 Laís V. Ramalho; Vladimir A. Távora; Kamil Zagorsek (2017). "New records of the Bryozoan Metrarabdotos from the Pirabas Formation (Lower Miocene), Pará State, Brazil". Palaeontologia Electronica. 20 (2): Article number 20.2.32A.
- ↑ Patrick N. Wyse Jackson; Andrej Ernst; Juan L. Suárez Andrés (2017). "Articulation in the Family Rhabdomesidae (Cryptostomata: Bryozoa) from the Mississippian of Ireland". Irish Journal of Earth Sciences. 35: 35–44. doi:10.3318/ijes.2017.35.35.
- 1 2 Petr V. Fedorov; Anna V. Koromyslova; Silviu O. Martha (2017). "The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae". PalZ. in press. doi:10.1007/s12542-017-0351-y.
- ↑ Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2017). "First record of a fossil selenariid bryozoan in South America". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1283054.
- 1 2 José F. Baeza-Carratalá; Matías Reolid; Fernando García Joral (2017). "New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event". Bulletin of Geosciences. 92 (2): 233–256. doi:10.3140/bull.geosci.1631.
- 1 2 V. V. Baranov (2017). "New brachiopods from the Ordovician of northeastern Russia". Paleontological Journal. 51 (1): 47–52. doi:10.1134/S0031030117010038.
- ↑ A. A. Madison (2017). "To the revision of the Upper Ordovician Bilobia Cooper (Strophomenida, Brachiopoda)". Paleontological Journal. 51 (4).
- ↑ Juan L. Benedetto; Fernando J. Lavie; Diego F. Muñoz (2017). "Broeggeria Walcott and other upper Cambrian and Tremadocian linguloid brachiopods from NW Argentina". Geological Journal. in press. doi:10.1002/gj.2880.
- 1 2 Maria Aleksandra Bitner; Arnold Müller (2017). "Late Eocene (Priabonian) brachiopod fauna from Dnipropetrovsk, eastern Ukraine". Bulletin of Geosciences. 92 (2): 211–231. doi:10.3140/bull.geosci.1661.
- 1 2 Danièle Gaspard (2017). "Deux nouvelles espèces de brachiopodes rhynchonelliformes de l’Albien stratotypique (Bassin de Paris) – mise au point". Annales de Paléontologie. 103 (2): 93–100. doi:10.1016/j.annpal.2017.04.004.
- 1 2 3 4 5 6 7 Dan Lü; Xue-Ping Ma (2017). "Small-sized brachiopods from the Upper Frasnian (Devonian) of central Hunan, China". Palaeoworld. in press. doi:10.1016/j.palwor.2017.01.005.
- ↑ Pu Zong; Xue-Ping Ma (2017). "Spiriferide brachiopods from the Famennian (Late Devonian) Hongguleleng Formation of western Junggar, Xinjiang, northwestern China". Palaeoworld. in press. doi:10.1016/j.palwor.2017.07.002.
- ↑ Jun-ichi Tazawa (2017). "Discovery of Cyrtospirifer (Late Devonian Brachiopoda) from Choanji in the South Kitakami Belt, northeastern Japan". The Journal of the Geological Society of Japan. 123 (2): 101–105. doi:10.5575/geosoc.2016.0059.
- 1 2 3 L.E. Popov; L.R.M. Cocks (2017). "The World’s second oldest strophomenoid-dominated benthic assemblage in the first Dapingian (Middle Ordovician) brachiopod fauna identified from Iran". Journal of Asian Earth Sciences. 140: 1–12. doi:10.1016/j.jseaes.2017.03.007.
- ↑ T. N. Smirnova; G. T. Ushatinskaya; E. A. Zhegallo; I. V. Panchenko (2017). "First records of brachiopods of the family Discinidae (Class Lingulata) from the Upper Jurassic of West Siberia". Paleontological Journal. 51 (2): 155–160. doi:10.1134/S0031030117020150.
- 1 2 Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Zhiliang Zhang; Zhifei Zhang (2017). "Unusual pitted Ordovician brachiopods from the East Baltic: the significance of coarsely pitted ornamentations in linguliforms". Papers in Palaeontology. 3 (3): 387–399. doi:10.1002/spp2.1080.
- 1 2 http://zoobank.org/references/BE5BDD7C-D263-4653-9859-EE6119DD0886
- ↑ Adam T. Halamski; Amine Cherif (2017). "Oxfordian brachiopods from the Saïda and Frenda mountains (Tlemcenian Domain, north-western Algeria)". Annales Societatis Geologorum Poloniae. in press. doi:10.14241/asgp.2017.006.
- ↑ Jisuo Jin; Lars E. Holmer (2017). "Pentameroid brachiopod Karlsorus new genus from the upper Wenlock (Silurian) Slite Beds, Gotland, Sweden". Journal of Paleontology. in press. doi:10.1017/jpa.2017.46.
- 1 2 3 Bernard Mottequin; Eric Simon (2017). "New insights on Tournaisian–Visean (Carboniferous, Mississippian) athyridide, orthotetide, rhynchonellide, and strophomenide brachiopods from southern Belgium". Palaeontologia Electronica. 20 (2): Article number 20.2.28A.
- ↑ Fengyu Wang; Jing Chen; Xu Dai; Haijun Song (2017). "A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction". Papers in Palaeontology. 3 (3): 425–439. doi:10.1002/spp2.1083.
- 1 2 Tatiana L. Modzalevskaya; Leonid E. Popov; Mansoureh Ghobadi Pour; Michail S. Dufour (2017). "First report on the Early Devonian (Lochkovian) brachiopods from eastern Central Pamirs, Tajikistan". Journal of Asian Earth Sciences. 138: 427–438. doi:10.1016/j.jseaes.2017.02.030.
- ↑ Yong-Qin Mao; Yuan-Long Zhao; Cheng-Wen Wang; Timothy Topper (2017). "A fresh look at Nisusia Walcott, 1905 from the Cambrian Kaili Formation in Guizhou". Palaeoworld. 26 (1): 12–24. doi:10.1016/j.palwor.2016.03.001.
- 1 2 David A.T. Harper; Matthew A. Parkes; Zhan Ren-Bin (2017). "Late Ordovician deep-water brachiopod fauna from Raheen, Waterford Harbour, Ireland". Irish Journal of Earth Sciences. 35: 1–18. doi:10.3318/ijes.2017.35.1.
- ↑ G.A. Cisterna; A.F. Sterren; O. López Gamundí; M.M. Vergel (2017). "Carboniferous postglacial faunas in the late Serpukhovian–Bashkirian interval of central-western Argentina". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1299795.
- ↑ Mohammad-Reza Kebria-Ee Zadeh; Leonid E. Popov; Mansoureh Ghobadi Pour (2017). "A new orthide brachiopod genus from the Middle Ordovician of the Alborz Mountains, Iran". GFF. Online edition. doi:10.1080/11035897.2017.1347197.
- ↑ Debahuti Mukherjee; Sabyasachi Shome (2017). "Tithonian brachiopods from the Kachchh and Jaisalmer basins, India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 187–199. doi:10.1127/njgpa/2017/0676.
- ↑ Jenaro L. García-Alcalde; Zarela Herrera (2016). "Tectogonotoechia rivasi n. sp. A new lower Pragian Celtiberian (Spain) Ancystrorhynchoidea rhynchonellid brachiopod" (PDF). Spanish Journal of Palaeontology. 32 (1): 115–128.
- ↑ Howard R. Feldman (2017). "Tunethyris blodgetti sp. nov. (Brachiopoda, Terebratulida) from the Middle Triassic of the Makhtesh Ramon, southern Israel". Annales Societatis Geologorum Poloniae. 87 (1): 89–99. doi:10.14241/asgp.2017.004.
- ↑ M. Mergl; İ. Hoşgör; I. O. Yilmaz; S. Zamora; J. Colmenar (2017). "Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2017.1327531.
- ↑ Sarah L. Sheffield; Colin D. Sumrall (2017). "Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology". Journal of Paleontology. 91 (4): 755–766. doi:10.1017/jpa.2016.159.
- ↑ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic". Geology. 45 (6): 531–534. doi:10.1130/G38909.1.
- ↑ Daniel B. Blake (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e417. doi:10.1130/G39163C.1.
- ↑ Ben Thuy; Hans Hagdorn; Andy S. Gale (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e418. doi:10.1130/G39210Y.1.
- ↑ Mariusz A. Salamon; Przemysław Gorzelak (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT". Geology. 45 (7): e419. doi:10.1130/G39196C.1.
- ↑ Ben Thuy (2017). "Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY". Geology. 45 (7): e420. doi:10.1130/G39221Y.1.
- ↑ David F. Wright (2017). "Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)". Journal of Paleontology. 91 (4): 799–814. doi:10.1017/jpa.2016.141.
- ↑ Selina R. Cole (2017). "Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata)". Journal of Paleontology. 91 (4): 815–828. doi:10.1017/jpa.2016.137.
- ↑ David F. Wright; William I. Ausich; Selina R. Cole; Mark E. Peter; Elizabeth C. Rhenberg (2017). "Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata)". Journal of Paleontology. 91 (4): 829–846. doi:10.1017/jpa.2016.142.
- ↑ Mohamed Said M. Ali (2017). "First Record of a New Species of Amblypygus (Echinoidea) from the Middle Miocene of Mersa Matruh, Western Desert, Egypt". Paleontological Research. 21 (1): 44–53. doi:10.2517/2016PR016.
- 1 2 3 4 5 6 Selina R. Cole; William I. Ausich; Jorge Colmenar; Samuel Zamora (2017). "Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain)". Journal of Paleontology. 91 (4): 715–734. doi:10.1017/jpa.2016.135.
- 1 2 3 4 5 6 Hans Hess; Ben Thuy (2017). "Extraordinary diversity of feather stars (Echinodermata: Crinoidea: Comatulida) from a Lower Jurassic (Pliensbachian–Toarcian) rock reef of Feuguerolles (Normandy, France)". Swiss Journal of Palaeontology. 136 (2): 301–321. doi:10.1007/s13358-016-0122-5.
- 1 2 Daniel B. Blake (2017). "Two new Carboniferous Asteroidea (Echinodermata) of the family Urasterellidae". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 284 (1): 65–73. doi:10.1127/njgpa/2017/0652.
- 1 2 3 Mohamed Said M. Ali (2017). "Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt". Journal of African Earth Sciences. 133: 46–73. doi:10.1016/j.jafrearsci.2017.04.031.
- 1 2 3 Timothy A.M. Ewin; Ben Thuy (2017). "Brittle stars from the British Oxford Clay: unexpected ophiuroid diversity on Jurassic sublittoral mud bottoms". Journal of Paleontology. 91 (4): 781–798. doi:10.1017/jpa.2016.162.
- 1 2 3 4 5 Andrew Scott Gale (2017). "An integrated microcrinoid zonation for the lower Campanian chalks of southern England, and its implications for correlation". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.02.002.
- ↑ Patrick D. McDermott; Christopher R. C. Paul (2017). "Ateleocystites? lansae sp. nov. (Mitrata, Anomalocystitidae) from the Upper Ordovician of South Wales". Geological Journal. 52 (1): 1–13. doi:10.1002/gj.2712.
- ↑ Luis E. Silva-Martínez; Alberto Blanco-Piñón; Jesús A. de León-González; Hidalgo Rodríguez-Vela (2017). "New Echinoid (Spatangoida: Toxasterinidae) from the Campanian of Coahuila, Northeastern Mexico". Boletín de la Sociedad Geológica Mexicana. 69 (2): 371–384.
- 1 2 Jeffrey R. Thompson; Elizabeth Petsios; David J. Bottjer (2017). "A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids". Journal of Paleontology. 91 (4): 767–780. doi:10.1017/jpa.2016.158.
- ↑ Jeffrey R. Thompson; Elizabeth Petsios; Eric H. Davidson; Eric M. Erkenbrack; Feng Gao; David J. Bottjer (2015). "Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid". Scientific Reports. 5: Article number 15541. PMC 4614444 . PMID 26486232. doi:10.1038/srep15541.
- ↑ Elise Nardin; Bertrand Lefebvre; Oldřich Fatka; Martina Nohejlová; Libor Kašička; Miroslav Šinágl; Michal Szabad (2017). "Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic". Journal of Paleontology. 91 (4): 672–684. doi:10.1017/jpa.2016.157.
- ↑ Nils Schlüter; Frank Wiese (2017). "The variable echinoid Micraster woodi sp. nov. – Trait variability patterns in a taxonomic nightmare". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.05.019.
- 1 2 3 Tony Sadler; Sarah K. Martin; Stephen J. Gallagher (2017). "Three new species of the echinoid genus Monostychia Laube, 1869 from Western Australia". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1282979.
- ↑ Mike Reich; James Sprinkle; Bertrand Lefebvre; Gertrud E. Rössner; Samuel Zamora (2017). "The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography". Journal of Paleontology. 91 (4): 735–754. doi:10.1017/jpa.2017.7.
- ↑ Stephen K. Donovan; Fiona E. Fearnhead (2017). "A Lower Devonian hexacrinitid crinoid (Camerata, Monobathrida) from south-west England". PalZ. 91 (2): 217–222. doi:10.1007/s12542-017-0344-x.
- 1 2 Louis G. Zachos (2017). "Paleocene echinoid faunas of the eastern United States". Journal of Paleontology. in press. doi:10.1017/jpa.2017.22.
- ↑ Bertrand Lefebvre; Rudy Lerosey-Aubril (2017). "Laurentian origin of solutan echinoderms: new evidence from the Guzhangian (Cambrian Series 3) Weeks Formation of Utah, USA". Geological Magazine. in press. doi:10.1017/S0016756817000152.
- 1 2 3 Yingyan Mao; William I. Ausich; Yue Li; Jih-Pai Lin; Caihua Lin (2017). "New taxa and phyletic evolution of the Aeronian (Llandovery, Silurian) Petalocrinidae (Echinodermata, Crinoidea) in Guizhou, South China Block". Journal of Paleontology. 91 (3): 477–492. doi:10.1017/jpa.2016.156.
- ↑ David R. Cordie; Brian J. Witzke (2017). "A New Crinoid Genus from the Middle Devonian of Iowa, USA (Camerata, Melocrinitidae)". Paleontological Research. 21 (1): 7–13. doi:10.2517/2016PR014.
- ↑ Samuel Zamora; Colin D. Sumrall; Xue-Jian Zhu; Bertrand Lefebvre (2017). "A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)". Geological Magazine. 154 (3): 465–475. doi:10.1017/S001675681600011X.
- ↑ Loïc Villier; Arnaud Brayard; Kevin G. Bylund; James F. Jenks; Gilles Escarguel; Nicolas Olivier; Daniel A. Stephen; Emmanuelle Vennin; Emmanuel Fara (2017). "Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1308972.
- ↑ Aaron W. Hunter; Kenneth J. McNamara (2017). "Prolonged co-existence of ‘archaic’ and ‘modern’ Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1353549.
- ↑ Didier Néraudeau; Jean-Pierre Pineau; Jean-Christophe Dudicourt; Patrice Raboeuf (2017). "Ulphaceaster sarthacensis, nouveau genre et nouvelle espèce d’échinide Archiaciidae du Cénomanien (Sarthe, France)". Annales de Paléontologie. 103 (1): 87–91. doi:10.1016/j.annpal.2017.01.002.
- 1 2 3 Gustavo G. Voldman; Guillermo L. Albanesi; Gladys Ortega; María Eugenia Giuliano; Carlos Ruben Monaldi (2017). "New conodont taxa and biozones from the Lower Ordovician of the Cordillera Oriental, NW Argentina". Geological Journal. 52 (3): 394–414. doi:10.1002/gj.2766.
- 1 2 C. Giles Miller; Alan P. Heward; Angelo Mossoni; Ivan J. Sansom (2017). "Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1314985.
- ↑ Josefina Carlorosi; Graciela Sarmiento; Susana Heredia (2017). "Selected Middle Ordovician key conodont species from the Santa Gertrudis Formation (Salta, Argentina): an approach to its biostratigraphical significance". Geological Magazine. in press: 1–15. doi:10.1017/S0016756816001035.
- ↑ Till Söte; Sven Hartenfels; Ralph Thomas Becker (2017). "Uppermost Famennian stratigraphy and facies development of the Reigern Quarry near Hachen (northern Rhenish Massif, Germany)". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-017-0287-y.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Xi-ping Dong; Huaqiao Zhang (2017). "Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China". Journal of Paleontology. 91 (S73): 1–89. doi:10.1017/jpa.2015.43.
- ↑ Fernanda Serra; Nicolás A. Feltes; Miles A. Henderson; Guillermo L. Albanesi (2017). "Darriwilian (Middle Ordovician) conodont biofacies from the Central Precordillera of Argentina". Marine Micropaleontology. 130: 15–28. doi:10.1016/j.marmicro.2016.12.002.
- 1 2 3 Y.D. Sun; X.T. Liu; J.X. Yan; B. Li; B. Chen; D.P.G. Bond; M.M. Joachimski; P.B. Wignall; X. Wang; X.L. Lai (2017). "Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 465, Part A: 42–63. doi:10.1016/j.palaeo.2016.10.013.
- ↑ Felix Lüddecke; Sven Hartenfels; Ralph Thomas Becker (2017). "Conodont biofacies of a monotonous middle Famennian pelagic carbonate succession (Upper Ballberg Quarry, northern Rhenish Massif)". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-017-0288-x.
- ↑ Thomas J. Suttner; Erika Kido; Andreas W. W. Suttner (2017). "Icriodus marieae, a new icriodontid conodont species from the Middle Devonian". PalZ. 91 (1): 137–144. doi:10.1007/s12542-017-0337-9.
- ↑ Cassiane Negreiros Cardoso; Javier Sanz-López; Silvia Blanco-Ferrera (2017). "Pennsylvanian conodonts from the Tapajós Group (Amazonas Basin, Brazil)". Geobios. 50 (2): 75–95. doi:10.1016/j.geobios.2017.02.004.
- ↑ Ke-Yi Hu; Yu-Ping Qi; Qiu-Lai Wang; Tamara I. Nemyrovska; Ji-Tao Chen (2017). "Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China". Palaeoworld. 26 (1): 64–82. doi:10.1016/j.palwor.2015.12.003.
- ↑ Huaibao P. Liu; Stig M. Bergström; Brian J. Witzke; Derek E. G. Briggs; Robert M. McKay; Annalisa Ferretti (2017). "Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA". Journal of Paleontology. 91 (3): 493–511. doi:10.1017/jpa.2016.155.
- 1 2 Nadezhda Izokh; Aleksandr Yazikov (2017). "Discovery of Early Carboniferous conodonts in Northern Kharaulakh Ranges (lower reaches of the Lena River, northeastern Siberia, Arctic Russia)". Revue de Micropaléontologie. 60 (2): 213–232. doi:10.1016/j.revmic.2017.03.001.
- ↑ Shunxin Zhang; David M.S. Jowett; Christopher R. Barnes (2017). "Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2017-0023.
- ↑ Yanlong Chen; Alexander Lukeneder (2017). "Late Triassic (Julian) conodont biostratigraphy of a transition from reefal limestones to deep-water environments on the Cimmerian terranes (Taurus Mountains, southern Turkey)". Papers in Palaeontology. 3 (3): 441–460. doi:10.1002/spp2.1082.
- 1 2 Sven Hartenfels; Ralph Thomas Becker (2017). "Age and correlation of the transgressive Gonioclymenia Limestone (Famennian, Tafilalt, eastern Anti-Atlas, Morocco)". Geological Magazine. in press: 1–44. doi:10.1017/S0016756816000893.
- ↑ Gilbert Klapper; Thomas T. Uyeno; Derek K. Armstrong; Peter G. Telford (2017). "Palmatolepis spallettae, new name for a Frasnian conodont species". Journal of Paleontology. 91 (3): 578. doi:10.1017/jpa.2017.21.
- ↑ A. N. Plotitsyn; A. V. Zhuravlev (2017). "A new species of the conodont genus Polygnathus from the Tournaisian of the northern Urals, Chernyshev Ridge and Pai-Khoi". Paleontological Journal. 51 (3): 304–307. doi:10.1134/S0031030117030091.
- 1 2 Z.T. Zhang; Y.D. Sun; X.L. Lai; M.M. Joachimski; P.B. Wignall (2017). "Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2017.02.011.
- ↑ Lina Wang; Paul B. Wignall; Yadong Sun; Chunbo Yan; Zaitian Zhang; Xulong Lai (2017). "New Permian-Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus". Journal of Asian Earth Sciences. 146: 152–167. doi:10.1016/j.jseaes.2017.05.014.
- ↑ Malcolm A. MacIver; Lars Schmitz; Ugurcan Mugan; Todd D. Murphey; Curtis D. Mobley (2017). "Massive increase in visual range preceded the origin of terrestrial vertebrates". Proceedings of the National Academy of Sciences of the United States of America. 114 (12): E2375–E2384. doi:10.1073/pnas.1615563114.
- ↑ Melanie Tietje; Mark-Oliver Rödel (2017). "Contradicting habitat type-extinction risk relationships between living and fossil amphibians". Royal Society Open Science. 4 (5): 170051. doi:10.1098/rsos.170051.
- ↑ Marylène Danto; Florian Witzmann; Stephanie E. Pierce; Nadia B. Fröbisch (2017). "Intercentrum versus pleurocentrum growth in early tetrapods: A paleohistological approach". Journal of Morphology. in press. doi:10.1002/jmor.20709.
- ↑ Florian Witzmann; Ingmar Werneburg (2017). "The Palatal Interpterygoid Vacuities of Temnospondyls and the Implications for the Associated Eye- and Jaw Musculature". The Anatomical Record. 300 (7): 1240–1269. doi:10.1002/ar.23582.
- ↑ Thomas Arbez; Anissa Dahoumane; J.-Sébastien Steyer (2017). "Exceptional endocranium and middle ear of Stanocephalosaurus (Temnospondyli: Capitosauria) from the Triassic of Algeria revealed by micro-CT scan, with new functional interpretations of the hearing system". Zoological Journal of the Linnean Society. 180 (4): 910–929. doi:10.1093/zoolinnean/zlw007.
- ↑ Josep Fortuny; Jordi Marcé-Nogué; Dorota Konietzko-Meier (2017). "Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach". Journal of Anatomy. 230 (6): 752–765. doi:10.1111/joa.12605.
- ↑ Bryan M. Gee; William G. Parker; Adam D. Marsh (2017). "Microanatomy and paleohistology of the intercentra of North American metoposaurids from the Upper Triassic of Petrified Forest National Park (Arizona, USA) with implications for the taxonomy and ontogeny of the group". PeerJ. 5: e3183. doi:10.7717/peerj.3183.
- ↑ Bryan M. Gee; William G. Parker (2017). "A juvenile Koskinonodon perfectus (Temnospondyli, Metoposauridae) from the Upper Triassic of Arizona and its implications for the taxonomy of North American metoposaurids". Journal of Paleontology. in press. doi:10.1017/jpa.2017.18.
- ↑ Florian Witzmann; Elizabeth Brainerd (2017). "Modeling the physiology of the aquatic temnospondyl Archegosaurus decheni from the early Permian of Germany". Fossil Record. 20 (2): 105–127. doi:10.5194/fr-20-105-2017.
- ↑ Pavel P. Skutschas; Elizaveta A. Boitsova (2017). "Histology of sculptured cranial dermal bones of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan". Historical Biology: An International Journal of Paleobiology. 29 (3): 423–429. doi:10.1080/08912963.2016.1171859.
- ↑ Yu-Fen Rong (2017). "Restudy of Regalerpeton weichangensis (Amphibia: Urodela) from the Lower Cretaceous of Hebei, China". Vertebrata PalAsiatica. in press.
- ↑ Ana María Báez; Raúl Orencio Gómez (2017). "Dealing with homoplasy: osteology and phylogenetic relationships of the bizarre neobatrachian frog Baurubatrachus pricei from the Upper Cretaceous of Brazil". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1287130.
- ↑ Massimo Delfino (2017). "Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.06.008.
- ↑ Florian Witzmann; Rainer R. Schoch (2017). "Skull and postcranium of the bystrowianid Bystrowiella schumanni from the Middle Triassic of Germany, and the position of chroniosuchians within Tetrapoda". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1336579.
- ↑ Jason D. Pardo; Matt Szostakiwskyj; Per E. Ahlberg; Jason S. Anderson (2017). "Hidden morphological diversity among early tetrapods". Nature. 546 (7660): 642–645. doi:10.1038/nature22966.
- ↑ Josep Fortuny; Stéphanie Gastou; François Escuillié; Lovasoa Ranivoharimanana; J.-Sébastien Steyer (2017). "A new extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and palaeobiogeographical implications for trematosaurids". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1335805.
- ↑ Jason D. Pardo; Bryan J. Small; Adam K. Huttenlocker (2017). "Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia". Proceedings of the National Academy of Sciences of the United States of America. 114 (27): E5389–E5395. doi:10.1073/pnas.1706752114.
- ↑ Marco Marzola; Octávio Mateus; Neil H. Shubin; Lars B. Clemmensen (2017). "Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland)". Journal of Vertebrate Paleontology. 37 (2): e1303501. doi:10.1080/02724634.2017.1303501.
- ↑ Laura Nicoli (2017). "New clues on anuran evolution: the oldest record of an extant hyloid clade in the Oligocene of Patagonia". Historical Biology: An International Journal of Paleobiology. Online edition: 1–14. doi:10.1080/08912963.2017.1282475.
- ↑ Ke-Qin Gao; Jianye Chen (2017). "A new crown-group frog (Amphibia: Anura) from the Early Cretaceous of northeastern Inner Mongolia, China". American Museum Novitates. 3876: 1–39. doi:10.1206/3876.1.
- ↑ Jorge A. Herrera-Flores; Thomas L. Stubbs; Michael J. Benton (2017). "Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?". Palaeontology. 60 (3): 319–328. doi:10.1111/pala.12284.
- ↑ Nicole Klein; Torsten M. Scheyer (2017). "Microanatomy and life history in Palaeopleurosaurus (Rhynchocephalia: Pleurosauridae) from the Early Jurassic of Germany". The Science of Nature. 104 (1–2): Article 4. doi:10.1007/s00114-016-1427-3.
- ↑ Paulo R. Romo-de-Vivar-Martínez; Agustín G. Martinelli; Voltaire D. Paes Neto; Marina B. Soares (2017). "Evidence of osteomyelitis in the dentary of the late Triassic rhynchocephalian Clevosaurus brasiliensis (Lepidosauria: Rhynchocephalia) from southern Brazil and behavioural implications". Historical Biology: An International Journal of Paleobiology. 29 (3): 320–327. doi:10.1080/08912963.2016.1158258.
- ↑ David I. Whiteside; Christopher J. Duffin; Heinz Furrer (2017). "The Late Triassic lepidosaur fauna from Hallau, North-Eastern Switzerland, and a new 'basal' rhynchocephalian Deltadectes elvetica gen. et sp. nov.". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 53–74. doi:10.1127/njgpa/2017/0669.
- 1 2 David I. Whiteside, FLS; Christopher J. Duffin, FLS (2017). "Late Triassic terrestrial microvertebrates from Charles Moore's "Microlestes" quarry, Holwell, Somerset, UK". Zoological Journal of the Linnean Society. 179 (3): 677–705. doi:10.1111/zoj.12458.
- ↑ Tiago R. Simões; Michael W. Caldwell; Luiz C. Weinschütz; Everton Wilner; Alexander W. A. Kellner (2017). "Mesozoic lizards from Brazil and their role in early squamate evolution in South America". Journal of Herpetology. 51 (3): 307–315. doi:10.1670/16-007.
- ↑ Tiago R. Simões; Michael W. Caldwell; Randall L. Nydam; Paulina Jiménez-Huidobro (2017). "Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes". Zoological Journal of the Linnean Society. 180 (1): 216–241. doi:10.1111/zoj.12487.
- ↑ Santiago Brizuela; Adriana M. Albino (2017). "Redescription of the extinct species Callopistes bicuspidatus Chani, 1976 (Squamata, Teiidae)". Journal of Herpetology. 51 (3): 343–354. doi:10.1670/16-121.
- ↑ Mateusz Tałanda (2017). "Evolution of postcranial skeleton in worm lizards inferred from its status in the Cretaceous stem-amphisbaenian Slavoia darevskii". Acta Palaeontologica Polonica. 62 (1): 9–23. doi:10.4202/app.00294.2016.
- ↑ Krister T. Smith (2017). "First crocodile-tailed lizard (Squamata: Pan-Shinisaurus) from the Paleogene of Europe". Journal of Vertebrate Paleontology. 37 (3): e1313743. doi:10.1080/02724634.2017.1313743.
- ↑ Georgios L. Georgalis; Andrea Villa; Massimo Delfino (2017). "The last European varanid: demise and extinction of monitor lizards (Squamata, Varanidae) from Europe". Journal of Vertebrate Paleontology. 37 (2): e1301946. doi:10.1080/02724634.2017.1301946.
- ↑ Tiago R. Simões; Oksana Vernygora; Ilaria Paparella; Paulina Jimenez-Huidobro; Michael W. Caldwell (2017). "Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group". PLoS ONE. 12 (5): e0176773. doi:10.1371/journal.pone.0176773.
- ↑ Paulina Jiménez-Huidobro; Tiago R. Simões; Michael W. Caldwell (2017). "Mosasauroids from Gondwanan continents". Journal of Herpetology. 51 (3): 355–364. doi:10.1670/16-017.
- ↑ Hallie P. Street & Michael W. Caldwell (2017). "Rediagnosis and redescription of Mosasaurus hoffmannii (Squamata: Mosasauridae) and an assessment of species assigned to the genus Mosasaurus". Geological Magazine. 154 (3): 521–557. doi:10.1017/S0016756816000236.
- ↑ Silvio Y. Onary; Thiago S. Fachini; Annie S. Hsiou (2017). "Mesozoic lizards from Brazil and their role in early squamate evolution in South America". Journal of Herpetology. 51 (3): 365–374. doi:10.1670/16-031.
- ↑ Jozef Klembara; Michael Rummel (2017). "New material of Ophisaurus, Anguis and Pseudopus (Squamata, Anguidae, Anguinae) from the Miocene of the Czech Republic and Germany and systematic revision and palaeobiogeography of the Cenozoic Anguinae". Geological Magazine. in press: 1–25. doi:10.1017/S0016756816000753.
- ↑ Adriana Albino (2017). "A new species of Gaimanophis (Serpentes, Boidae) from the Miocene of northwestern Argentina with remarks on the Neogene boids of South America". Comptes Rendus Palevol. 16 (3): 278–283. doi:10.1016/j.crpv.2016.11.007.
- ↑ Rodrigo A. Otero; Sergio Soto-Acuña; David Rubilar-Rogers; Carolina S. Gutstein (2017). "Kaikaifilu hervei gen. et sp. nov., a new large mosasaur (Squamata, Mosasauridae) from the upper Maastrichtian of Antarctica". Cretaceous Research. 70: 209–225. doi:10.1016/j.cretres.2016.11.002.
- ↑ David G. DeMar; Jack L. Conrad; Jason J. Head; David J. Varricchio; Gregory P. Wilson (2017). "A new Late Cretaceous iguanomorph from North America and the origin of New World Pleurodonta (Squamata, Iguania)". Proceedings of the Royal Society B: Biological Sciences. 284 (1847): 20161902. doi:10.1098/rspb.2016.1902.
- ↑ Catherine G. Klein; Nicholas R. Longrich; Nizar Ibrahim; Samir Zouhri; David M. Martill (2017). "A new basal snake from the mid-Cretaceous of Morocco". Cretaceous Research. 72: 134–141. doi:10.1016/j.cretres.2016.12.001.
- ↑ Vlad A. Codrea; Márton Venczel; Alexandru Solomon (2017). "A new family of teiioid lizards from the Upper Cretaceous of Romania with notes on the evolutionary history of early teiioids". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx008.
- ↑ Corentin Bochaton; Renaud Boistel; Sandrine Grouard; Ivan Ineich; Anne Tresset; Salvador Bailon (2017). "Evolution, diversity and interactions with past human populations of recently extinct Pholidoscelis lizards (Squamata: Teiidae) from the Guadeloupe Islands (French West-Indies)". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2017.1343824.
- ↑ Andrej Čerňanský; Krister T. Smith (2017). "Eolacertidae: a new extinct clade of lizards from the Palaeogene; with comments on the origin of the dominant European reptile group – Lacertidae". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2017.1327530.
- 1 2 Liping Dong; Yuan Wang; Susan E. Evans (2017). "A new lizard (Reptilia: Squamata) from the Lower Cretaceous Yixian Formation of China, with a taxonomic revision of Yabeinosaurus". Cretaceous Research. 72: 161–171. doi:10.1016/j.cretres.2016.12.017.
- ↑ Steven E. Jasinski; David A. Moscato (2017). "Late Hemphillian Colubrid Snakes (Serpentes, Colubridae) from the Gray Fossil Site of Northeastern Tennessee". Journal of Herpetology. 51 (2): 245–257. doi:10.1670/16-020.
- ↑ Ryosuke Motani; Da-yong Jiang; Andrea Tintori; Cheng Ji; Jian-dong Huang (2017). "Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates". Proceedings of the Royal Society B: Biological Sciences. 284 (1854): 20170241. doi:10.1098/rspb.2017.0241.
- ↑ Judy A. Massare; Dean R. Lomax (2017). "A taxonomic reassessment of Ichthyosaurus communis and I. intermedius and a revised diagnosis for the genus". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1291116.
- ↑ Ilaria Paparella; Erin E. Maxwell; Angelo Cipriani; Scilla Roncacè; Michael W. Caldwell (2017). "The first ophthalmosaurid ichthyosaur from the Upper Jurassic of the Umbrian–Marchean Apennines (Marche, Central Italy)". Geological Magazine. 154 (4): 837–858. doi:10.1017/S0016756816000455.
- ↑ Lene Liebe Delsett; Aubrey J. Roberts; Patrick S. Druckenmiller; Jørn H. Hurum (2017). "A New Ophthalmosaurid (Ichthyosauria) from Svalbard, Norway, and Evolution of the Ichthyopterygian Pelvic Girdle". PLoS ONE. 12 (1): e0169971. doi:10.1371/journal.pone.0169971.
- ↑ Laura C. Soul; Roger B. J. Benson (2017). "Developmental mechanisms of macroevolutionary change in the tetrapod axis: A case study of Sauropterygia". Evolution. 71 (5): 1164–1177. doi:10.1111/evo.13217.
- ↑ Stephanie B. Crofts; James M. Neenan; Torsten M. Scheyer; Adam P. Summers (2017). "Tooth occlusal morphology in the durophagous marine reptiles, Placodontia (Reptilia: Sauropterygia)". Paleobiology. 43 (1): 114–128. doi:10.1017/pab.2016.27.
- ↑ Qing-Hua Shang; Chun Li; Xiao-Chun Wu (2017). "New information on Dianmeisaurus gracilis Shang & Li, 2015". Vertebrata PalAsiatica. 55 (2): 145–161.
- ↑ Dawid Surmik; Bruce M. Rothschild; Roman Pawlicki (2017). "Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone". The Science of Nature. 104 (3–4): Article 25. doi:10.1007/s00114-017-1451-y.
- ↑ Wen-Bin Lin; Da-Yong Jiang; Olivier Rieppel; Ryosuke Motani; Cheng Ji; Andrea Tintori; Zuo-Yu Sun; Min Zhou (2017). "A new specimen of Lariosaurus xingyiensis (Reptilia, Sauropterygia) from the Ladinian (Middle Triassic) Zhuganpo Member, Falang Formation, Guizhou, China". Journal of Vertebrate Paleontology. 37 (2): e1278703. doi:10.1080/02724634.2017.1278703.
- ↑ Dawid Surmik; Bruce M. Rothschild; Mateusz Dulski; Katarzyna Janiszewska (2017). "Two types of bone necrosis in the Middle Triassic Pistosaurus longaevus bones: the results of integrated studies". Royal Society Open Science. 4 (7): 170204. doi:10.1098/rsos.170204.
- ↑ Leslie F. Noè; Michael A. Taylor; Marcela Gómez-Pérez (2017). "An integrated approach to understanding the role of the long neck in plesiosaurs". Acta Palaeontologica Polonica. 62 (1): 137–162. doi:10.4202/app.00334.2016.
- ↑ Aubrey J. Roberts; Patrick S. Druckenmiller; Lene L. Delsett; Jørn H. Hurum (2017). "Osteology and relationships of Colymbosaurus Seeley, 1874, based on new material of C. svalbardensis from the Slottsmøya Member, Agardhfjellet Formation of central Spitsbergen". Journal of Vertebrate Paleontology. 37 (1): e1278381. doi:10.1080/02724634.2017.1278381.
- ↑ Benjamin P. Kear; Dennis Larsson; Johan Lindgren; Martin Kundrát (2017). "Exceptionally prolonged tooth formation in elasmosaurid plesiosaurians". PLoS ONE. 12 (2): e0172759. doi:10.1371/journal.pone.0172759.
- ↑ José P. O'Gorman; Rodrigo A. Otero; Norton Hiller; John Simes; Marianna Terezow (2017). "Redescription of Tuarangisaurus keyesi (Sauropterygia; Elasmosauridae), a key species from the uppermost Cretaceous of the Weddellian Province: Internal skull anatomy and phylogenetic position". Cretaceous Research. 71: 118–136. doi:10.1016/j.cretres.2016.11.014.
- ↑ José P. O'Gorman; Marta S. Fernandez (2017). "Neuroanatomy of the vertebral column of Vegasaurus molyi (Elasmosauridae) with comments on the cervico-dorsal limit in plesiosaurs". Cretaceous Research. 73: 91–97. doi:10.1016/j.cretres.2016.11.018.
- ↑ José P. O'Gorman; Marianella Talevi; Marta S. Fernández (2017). "Osteology of a perinatal aristonectine (Plesiosauria; Elasmosauridae)". Antarctic Science. 29 (1): 61–72. doi:10.1017/S0954102016000365.
- ↑ Norton Hiller; José P. O’Gorman; Rodrigo A. Otero; Al A. Mannering (2017). "A reappraisal of the Late Cretaceous Weddellian plesiosaur genus Mauisaurus Hector, 1874". New Zealand Journal of Geology and Geophysics. 60 (2): 112–128. doi:10.1080/00288306.2017.1281317.
- ↑ Sven Sachs; Benjamin P. Kear (2017). "Redescription of the elasmosaurid plesiosaurian Libonectes atlasense from the Upper Cretaceous of Morocco". Cretaceous Research. 74: 205–222. doi:10.1016/j.cretres.2017.02.017.
- ↑ José P. O’Gorman; Rodolfo A. Coria (2017). "A new elasmosaurid specimen from the upper Maastrichtian of Antarctica: new evidence of a monophyletic group of Weddellian elasmosaurids". Alcheringa: An Australasian Journal of Palaeontology. 41 (2): 240–249. doi:10.1080/03115518.2016.1224318.
- ↑ Ana Marquez-Aliaga; Nicole Klein; Matías Reolid; Pablo Plasencia; José A. Villena; Carlos Martinez-Perez (2017). "An enigmatic marine reptile, Hispaniasaurus cranioelongatus (gen. et sp. nov.) with nothosauroid affinities from the Ladinian of the Iberian Range (Spain)". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2017.1359264.
- ↑ Valentin Fischer; Roger B.J. Benson; Nikolay G. Zverkov; Laura C. Soul; Maxim S. Arkhangelsky; Olivier Lambert; Ilya M. Stenshin; Gleb N. Uspensky; Patrick S. Druckenmiller (2017). "Plasticity and Convergence in the Evolution of Short-Necked Plesiosaurs". Current Biology. 27 (11): 1667–1676.e3. doi:10.1016/j.cub.2017.04.052.
- ↑ Eberhard Frey; Eric W.A. Mulder; Wolfgang Stinnesbeck; Héctor E. Rivera-Sylva; José Manuel Padilla-Gutiérrez; Arturo Homero González-González (2017). "A new polycotylid plesiosaur with extensive soft tissue preservation from the early Late Cretaceous of northeast Mexico". Boletín de la Sociedad Geológica Mexicana. 69 (1): 87–134.
- ↑ Danielle J. Serratos; Patrick Druckenmiller; Roger B. J. Benson (2017). "A new elasmosaurid (Sauropterygia, Plesiosauria) from the Bearpaw Shale (Late Cretaceous, Maastrichtian) of Montana demonstrates multiple evolutionary reductions of neck length within Elasmosauridae". Journal of Vertebrate Paleontology. 37 (2): e1278608. doi:10.1080/02724634.2017.1278608.
- ↑ Adam S. Smith; Ricardo Araújo (2017). "Thaumatodracon wiedenrothi, a morphometrically and stratigraphically intermediate new rhomaleosaurid plesiosaurian from the Lower Jurassic (Sinemurian) of Lyme Regis". Palaeontographica Abteilung A. 308 (4–6): 89–125. doi:10.1127/pala/308/2017/89.
- ↑ Tomasz Szczygielski (2017). "Homeotic shift at the dawn of the turtle evolution". Royal Society Open Science. 4 (4): 160933. doi:10.1098/rsos.160933.
- ↑ Asher J. Lichtig; Spencer G. Lucas; Hendrik Klein; David M. Lovelace (2017). "Triassic turtle tracks and the origin of turtles". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1339037.
- ↑ Walter G. Joyce (2017). "A Review of the Fossil Record of Basal Mesozoic Turtles". Bulletin of the Peabody Museum of Natural History. 58 (1): 65–113. doi:10.3374/014.058.0105.
- ↑ Asher J. Lichtig; Spencer G. Lucas (2017). "A simple method for inferring habitats of extinct turtles". Palaeoworld. in press. doi:10.1016/j.palwor.2017.02.001.
- ↑ Stephen F. Poropat; Lesley Kool; Patricia Vickers-Rich; Thomas H. Rich (2017). "Oldest meiolaniid turtle remains from Australia: evidence from the Eocene Kerosene Creek Member of the Rundle Formation, Queensland". Alcheringa: An Australasian Journal of Palaeontology. 41 (2): 231–239. doi:10.1080/03115518.2016.1224441.
- ↑ Ariana Paulina-Carabajal; Juliana Sterli; Justin Georgi; Stephen F. Poropat; Benjamin P. Kear (2017). "Comparative neuroanatomy of extinct horned turtles (Meiolaniidae) and extant terrestrial turtles (Testudinidae), with comments on the palaeobiological implications of selected endocranial features". Zoological Journal of the Linnean Society. 180 (4): 930–950. doi:10.1093/zoolinnean/zlw024.
- ↑ Haiyan Tong; Lu Li; Chaqing Jie; Laiping Yi (2017). "New material of Jiangxichelys ganzhouensis Tong & Mo, 2010 (Testudines: Cryptodira: Nanhsiungchelyidae) and its phylogenetic and palaeogeographical implications". Geological Magazine. 154 (3): 456–464. doi:10.1017/S0016756816000108.
- ↑ Shuai Shao; Yang Yang; Lan Li; Da-Yong Sun; Chang-Fu Zhou (2017). "The first juvenile specimen of Manchurochelys manchoukuoensis from the Early Cretaceous Jehol Biota". PeerJ. 5: e3274. doi:10.7717/peerj.3274.
- ↑ Andrew D. Gentry (2017). "New material of the Late Cretaceous marine turtle Ctenochelys acris Zangerl, 1953 and a phylogenetic reassessment of the ‘toxochelyid’-grade taxa". Journal of Systematic Palaeontology. 15 (8): 675–696. doi:10.1080/14772019.2016.1217087.
- ↑ A. Pérez-García; F.-R. Sáez-Benito; X. Murelaga (2017). "New information on the anatomy and systematics of the Spanish Lower Cretaceous Camerochelys vilanovai (Testudines, Pan-Cryptodira)". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0014-6.
- ↑ Heather F. Smith; J. Howard Hutchison; K. E. Beth Townsend; Brent Adrian; Daniel Jager (2017). "Morphological variation, phylogenetic relationships, and geographic distribution of the Baenidae (Testudines), based on new specimens from the Uinta Formation (Uinta Basin), Utah (USA)". PLoS ONE. 12 (7): e0180574. doi:10.1371/journal.pone.0180574.
- ↑ Igor G. Danilov; Ekaterina M. Obraztsova; Wen Chen; Jin Jianhua (2017). "The cranial morphology of Anosteira maomingensis (Testudines, Pan-Carettochelys) and the evolution of pan-carettochelyid turtles". Journal of Vertebrate Paleontology. in press: e1335735. doi:10.1080/02724634.2017.1335735.
- ↑ Yasuhisa Nakajima; Igor G. Danilov; Ren Hirayama; Teppei Sonoda; Torsten M. Scheyer (2017). "Morphological and histological evidence for the oldest known softshell turtles from Japan". Journal of Vertebrate Paleontology. 37 (2): e1278606. doi:10.1080/02724634.2017.1278606.
- ↑ Georgios L. Georgalis; Daniel Zoboli; Gian Luigi Pillola; Massimo Delfino (2017). "A revision of the trionychid turtle Procyclanorbis sardus Portis, 1901 from the late Miocene of Sardinia (Italy)". Annales de Paléontologie. 103 (2): 127–134. doi:10.1016/j.annpal.2017.04.002.
- ↑ Edwin A. Cadena; Juan Abella; Maria D. Gregori (2017). "New findings of Pleistocene fossil turtles (Geoemydidae, Kinosternidae and Chelydridae) from Santa Elena Province, Ecuador". PeerJ. 5: e3215. doi:10.7717/peerj.3215.
- ↑ Adán Pérez-García; Evangelos Vlachos; Alfonso Arribas (2017). "The last giant continental tortoise of Europe: A survivor in the Spanish Pleistocene site of Fonelas P-1". Palaeogeography, Palaeoclimatology, Palaeoecology. 470: 30–39. doi:10.1016/j.palaeo.2017.01.011.
- ↑ Jérémy Anquetin; Haiyan Tong; Julien Claude (2017). "A Jurassic stem pleurodire sheds light on the functional origin of neck retraction in turtles". Scientific Reports. 7: Article number 42376. doi:10.1038/srep42376.
- ↑ Patrick M. Sullivan; Walter G. Joyce (2017). "The shell and pelvic anatomy of the Late Jurassic turtle Platychelys oberndorferi based on material from Solothurn, Switzerland". Swiss Journal of Palaeontology. 136 (2): 323–343. doi:10.1007/s13358-017-0136-7.
- ↑ A. Pérez-García; A. Cobos; R. Royo-Torres (2017). "The oldest evidence of a dortokid turtle (stem Pleurodira) from the uppermost Hauterivian-basal Barremian El Castellar Formation (Teruel, Spain)". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0013-7.
- ↑ Guilherme Hermanson; Gabriel S. Ferreira; Max C. Langer (2017). "The largest Cretaceous podocnemidoid turtle (Pleurodira) revealed by an isolated plate from the Bauru Basin, south-central Brazil". Historical Biology: An International Journal of Paleobiology. 29 (6): 833–840. doi:10.1080/08912963.2016.1248434.
- ↑ Thiago F. Mariani; Pedro S.R. Romano (2017). "Intra-specific variation and allometry of the skull of Late Cretaceous side-necked turtle Bauruemys elegans (Pleurodira, Podocnemididae) and how to deal with morphometric data in fossil vertebrates". PeerJ. 5: e2890. doi:10.7717/peerj.2890.
- ↑ J.M. Jannello; I.J. Maniel; E. Previtera; M.S. de la Fuente (2017). "Linderochelys rinconensis (Testudines: Pan-Chelidae) from the Upper Cretaceous of northern Patagonia: New insights from shell bone histology, morphology and diagenetic implications". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.05.011.
- ↑ Gustavo R. Oliveira; Alexander W.A. Kellner (2017). "Rare hatchling specimens of Araripemys Price, 1973 (Testudines, Pelomedusoides, Araripemydidae) from the Crato formation, Araripe Basin". Journal of South American Earth Sciences. in press. doi:10.1016/j.jsames.2017.07.014.
- ↑ Samuel T. Turvey; Juan Almonte; James Hansford; R. Paul Scofield; Jorge L. Brocca; Sandra D. Chapman (2017). "A new species of extinct Late Quaternary giant tortoise from Hispaniola". Zootaxa. 4277 (1): 1–16. doi:10.11646/zootaxa.4277.1.1.
- ↑ Adán Pérez-García; France de Lapparent de Broin; Xabier Murelaga (2017). "The Erymnochelys group of turtles (Pleurodira, Podocnemididae) in the Eocene of Europe: New taxa and paleobiogeographical implications". Palaeontologia Electronica. 20 (1): Article number 20.1.14A.
- ↑ Marcelo S. de la Fuente; Ignacio Maniel; Juan Marcos Jannello; Juliana Sterli; Bernardo Gonzalez Riga; Fernando Novas (2017). "A new large panchelid turtle (Pleurodira) from the Loncoche Formation (upper Campanian-lower Maastrichtian) of the Mendoza Province (Argentina): Morphological, osteohistological studies, and a preliminary phylogenetic analysis". Cretaceous Research. 69: 147–168. doi:10.1016/j.cretres.2016.09.007.
- ↑ Tomasz Szczygielski; Daniel Tyborowski; Błażej Błażejowski (2017). "A new pancryptodiran turtle from the Late Jurassic of Poland and palaeobiology of early marine turtles". Geological Journal. in press. doi:10.1002/gj.2952.
- ↑ Donald Brinkman; Márton Rabi; Lijun Zhao (2017). "Lower Cretaceous fossils from China shed light on the ancestral body plan of crown softshell turtles (Trionychidae, Cryptodira)". Scientific Reports. 7: Article number 6719. doi:10.1038/s41598-017-04101-0.
- ↑ Natasha S. Vitek; Igor G. Danilov; Yasuhisa Nakajima; Ren Hirayama (2017). "Redescription of the skull of "Trionyx" kyrgyzensis and improved phylogenetic taxon sampling of Cretaceous and Palaeogene soft-shelled turtles (Trionychidae) of Asia, including the oldest crown trionychids". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1283365.
- ↑ Christian Püntener; Jérémy Anquetin; Jean-Paul Billon-Bruyat (2017). "The comparative osteology of Plesiochelys bigleri n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland)". PeerJ. 5: e3482. doi:10.7717/peerj.3482.
- ↑ Marcelo S. De La Fuente; Ignacio Maniel; Juan Marcos Jannello; Juliana Sterli; Alberto C. Garrido; Rodolfo A. Garcia; Leonardo Salgado; José I. Canudo; Raúl Bolatti (2017). "Unusual shell anatomy and osteohistology in a new Late Cretaceous panchelid turtle from northwestern Patagonia, Argentina". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00340.2017.
- ↑ Georgios L. Georgalis; Walter G. Joyce (2017). "A Review of the Fossil Record of Old World Turtles of the Clade Pan-Trionychidae". Bulletin of the Peabody Museum of Natural History. 58 (1): 115–208. doi:10.3374/014.058.0106.
- ↑ F. Clarac; V. De Buffrénil; C. Brochu; J. Cubo (2017). "The evolution of bone ornamentation in Pseudosuchia: morphological constraints versus ecological adaptation". Biological Journal of the Linnean Society. 121 (2): 395–408. doi:10.1093/biolinnean/blw034.
- ↑ Agustina Lecuona; Julia B. Desojo; Diego Pol (2017). "New information on the postcranial skeleton of Gracilisuchus stipanicicorum (Archosauria: Suchia) and reappraisal of its phylogenetic position". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx011.
- ↑ Torsten M. Scheyer; Hans-Dieter Sues (2017). "Expanded dorsal ribs in the Late Triassic pseudosuchian reptile Euscolosuchus olseni". Journal of Vertebrate Paleontology. 37 (1): e1248768. doi:10.1080/02724634.2017.1248768.
- ↑ Sterling Nesbitt; Julia B. Desojo (2017). "The osteology and phylogenetic position of Luperosuchus fractus (Archosauria: Loricata) from the latest Middle Triassic or earliest Late Triassic of Argentina". Ameghiniana. 54 (3): 261–282. doi:10.5710/AMGH.09.04.2017.3059.
- ↑ Nicole Klein; Christian Foth; Rainer R. Schoch (2017). "Preliminary observations on the bone histology of the Middle Triassic pseudosuchian archosaur Batrachotomus kupferzellensis reveal fast growth with laminar fibrolamellar bone tissue". Journal of Vertebrate Paleontology. in press: e1333121. doi:10.1080/02724634.2017.1333121.
- ↑ João Russo; Octávio Mateus; Marco Marzola; Ausenda Balbino (2017). "Two new ootaxa from the late Jurassic: The oldest record of crocodylomorph eggs, from the Lourinhã Formation, Portugal". PLoS ONE. 12 (3): e0171919. doi:10.1371/journal.pone.0171919.
- ↑ Octávio Mateus; Marco Marzola; Anne S. Schulp; Louis L. Jacobs; Michael J. Polcyn; Vladimir Pervov; António Olímpio Gonçalves; Maria Luisa Morais (2017). "Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 471: 220–232. doi:10.1016/j.palaeo.2016.12.049.
- ↑ Juan Martin Leardi; Diego Pol; James Matthew Clark (2017). "Detailed anatomy of the braincase of Macelognathus vagans Marsh, 1884 (Archosauria, Crocodylomorpha) using high resolution tomography and new insights on basal crocodylomorph phylogeny". PeerJ. 5: e2801. doi:10.7717/peerj.2801.
- ↑ Eric W. Wilberg (2017). "Investigating patterns of crocodyliform cranial disparity through the Mesozoic and Cenozoic". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlw027.
- ↑ Cristiano Dal Sasso; Giovanni Pasini; Guillaume Fleury; Simone Maganuco (2017). "Razanandrongobe sakalavae, a gigantic mesoeucrocodylian from the Middle Jurassic of Madagascar, is the oldest known notosuchian". PeerJ. 5: e3481. doi:10.7717/peerj.3481.
- ↑ Leonardo Cotts; André Eduardo Piacentini Pinheiro; Thiago da Silva Marinho; Ismar de Souza Carvalho; Fabio Di Dario (2017). "Postcranial skeleton of Campinasuchus dinizi (Crocodyliformes, Baurusuchidae) from the Upper Cretaceous of Brazil, with comments on the ontogeny and ecomorphology of the species". Cretaceous Research. 70: 163–188. doi:10.1016/j.cretres.2016.11.003.
- ↑ Sandra Aparecida Simionato Tavares; Fresia Ricardi Branco; Ismar de Souza Carvalho; Lara Maldanis (2017). "The morphofunctional design of Montealtosuchus arrudacamposi (Crocodyliformes, Upper Cretaceous) of the Bauru Basin, Brazil". Cretaceous Research. 79: 64–76. doi:10.1016/j.cretres.2017.07.003.
- ↑ Joseph A. Frederickson; Joshua E. Cohen; Tyler C. Hunt; Richard L. Cifelli (2017). "A new occurrence of Dakotasuchus kingi from the Late Cretaceous of Utah, USA, and the diagnostic utility of postcranial characters in Crocodyliformes". Acta Palaeontologica Polonica. 62 (2): 279–286. doi:10.4202/app.00338.2016.
- ↑ Stephanie E. Pierce; Megan Williams; Roger B.J. Benson (2017). "Virtual reconstruction of the endocranial anatomy of the early Jurassic marine crocodylomorph Pelagosaurus typus (Thalattosuchia)". PeerJ. 5: e3225. doi:10.7717/peerj.3225.
- ↑ Yanina Herrera; Marta S. Fernández; Susana G. Lamas; Lisandro Campos; Marianella Talevi; Zulma Gasparini (2017). "Morphology of the sacral region and reproductive strategies of Metriorhynchidae: a counter-inductive approach". Earth and Environmental Science Transactions of The Royal Society of Edinburgh. 106 (4): 247–255. doi:10.1017/S1755691016000165.
- ↑ Jorge Cubo; Meike Köhler; Vivian de Buffrenil (2017). "Bone histology of Iberosuchus macrodon (Sebecosuchia, Crocodylomorpha)". Lethaia. in press. doi:10.1111/let.12203.
- ↑ Grant J. Field; David M. Martill (2017). "Unusual soft tissue preservation in the Early Cretaceous (Aptian) crocodile cf. Susisuchus from the Crato Formation of north east Brazil". Cretaceous Research. 75: 179–192. doi:10.1016/j.cretres.2017.04.001.
- ↑ Hongyu Yi; Jonathan P. Tennant; Mark T. Young; Thomas J. Challands; Davide Foffa; John D. Hudson; Dugald A. Ross; Stephen L. Brusatte (2017). "An unusual small-bodied crocodyliform from the Middle Jurassic of Scotland, UK, and potential evidence for an early diversification of advanced neosuchians". Earth and Environmental Science Transactions of The Royal Society of Edinburgh. in press. doi:10.1017/S1755691017000032.
- ↑ I. Narváez; C. A. Brochu; F. Escaso; A. Pérez-García; F. Ortega (2017). "Analysis and phylogenetic status of the eusuchian fragmentary material from Western Europe assigned to Allodaposuchus precedens". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0025-3.
- ↑ Julio Company; Xabier Pereda-Suberbiola (2017). "Long bone histology of a eusuchian crocodyliform from the Upper Cretaceous of Spain: Implications for growth strategy in extinct crocodiles". Cretaceous Research. 72: 1–7. doi:10.1016/j.cretres.2016.12.002.
- ↑ Xiao-Chun Wu; Chun Li; Yan-Yin Wang (2017). "Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964". Vertebrata PalAsiatica. in press.
- ↑ Alexander K. Hastings; Meinolf Hellmund (2017). "Evidence for prey preference partitioning in the middle Eocene high-diversity crocodylian assemblage of the Geiseltal-Fossillagerstätte, Germany utilizing skull shape analysis". Geological Magazine. 154 (1): 119–146. doi:10.1017/S0016756815001041.
- ↑ Paula Bona; Ariana Paulina Carabajal; Zulma Gasparini (2017). "Neuroanatomy of Gryposuchus neogaeus (Crocodylia, Gavialoidea): a first integral description of the braincase and endocranial morphological variation in extinct and extant gavialoids". Earth and Environmental Science Transactions of The Royal Society of Edinburgh. 106 (4): 235–246. doi:10.1017/S1755691016000189.
- ↑ Adam M. Yates (2017). "The biochronology and palaeobiogeography of Baru (Crocodylia: Mekosuchinae) based on new specimens from the Northern Territory and Queensland, Australia". PeerJ. 5: e3458. doi:10.7717/peerj.3458.
- ↑ Michael D. Stein; Adam Yates; Suzanne J. Hand; Michael Archer (2017). "Variation in the pelvic and pectoral girdles of Australian Oligo–Miocene mekosuchine crocodiles with implications for locomotion and habitus". PeerJ. 5: e3501. doi:10.7717/peerj.3501.
- ↑ Ángela D. Buscalioni (2017). "The Gobiosuchidae in the early evolution of Crocodyliformes". Journal of Vertebrate Paleontology. 37 (3): e1324459. doi:10.1080/02724634.2017.1324459.
- ↑ Andrew B. Heckert; Nicholas C. Fraser; Vincent P. Schneider (2017). "A new species of Coahomasuchus (Archosauria, Aetosauria) from the Upper Triassic Pekin Formation, Deep River Basin, North Carolina". Journal of Paleontology. 91 (1): 162–178. doi:10.1017/jpa.2016.130.
- ↑ Daniela Schwarz; Maik Raddatz; Oliver Wings (2017). "Knoetschkesuchus langenbergensis gen. nov. sp. nov., a new atoposaurid crocodyliform from the Upper Jurassic Langenberg Quarry (Lower Saxony, northwestern Germany), and its relationships to Theriosuchus". PLoS ONE. 12 (2): e0160617. doi:10.1371/journal.pone.0160617.
- ↑ Michela M. Johnson; Mark T. Young; Lorna Steel; Davide Foffa; Adam S. Smith; Stéphane Hua; Philipe Havlik; Eliza A. Howlett; Gareth Dyke (2017). "Re-description of ‘Steneosaurus’ obtusidens Andrews, 1909, an unusual macrophagous teleosaurid crocodylomorph from the Middle Jurassic of England". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx035.
- ↑ Hsi-Yin Shan; Xiao-Chun Wu; Yen-Nien Cheng; Tamaki Sato (2017). "Maomingosuchus petrolica, a restudy of "Tomistoma" petrolica Yeh, 1958". Palaeoworld. in press. doi:10.1016/j.palwor.2017.03.006.
- ↑ Giovanne M. Cidade; Andrés Solórzano; Ascanio Daniel Rincón; Douglas Riff; Annie Schmaltz Hsiou (2017). "A new Mourasuchus (Alligatoroidea, Caimaninae) from the late Miocene of Venezuela, the phylogeny of Caimaninae and considerations on the feeding habits of Mourasuchus". PeerJ. 5: e3056. doi:10.7717/peerj.3056.
- ↑ Matthew G. Baron; David B. Norman; Paul M. Barrett (2017). "A new hypothesis of dinosaur relationships and early dinosaur evolution". Nature. 543 (7646): 501–506. doi:10.1038/nature21700.
- ↑ Jordan C. Mallon (2017). "Recognizing sexual dimorphism in the fossil record: lessons from nonavian dinosaurs". Paleobiology. 43 (3): 495–507. doi:10.1017/pab.2016.51.
- ↑ David W. E. Hone; Jordan C. Mallon (2017). "Protracted growth impedes the detection of sexual dimorphism in non-avian dinosaurs". Palaeontology. 60 (4): 535–545. doi:10.1111/pala.12298.
- ↑ Jamie A. MacLaren; Philip S. L. Anderson; Paul M. Barrett; Emily J. Rayfield (2017). "Herbivorous dinosaur jaw disparity and its relationship to extrinsic evolutionary drivers". Paleobiology. 43 (1): 15–33. doi:10.1017/pab.2016.31.
- ↑ Corwin Sullivan; Xing Xu (2017). "Morphological Diversity and Evolution of the Jugal in Dinosaurs". The Anatomical Record. 300 (1): 30–48. doi:10.1002/ar.23488.
- ↑ Steven W. Salisbury; Anthony Romilio; Matthew C. Herne; Ryan T. Tucker; Jay P. Nair (2017). "The Dinosaurian Ichnofauna of the Lower Cretaceous (Valanginian–Barremian) Broome Sandstone of the Walmadany Area (James Price Point), Dampier Peninsula, Western Australia". Journal of Vertebrate Paleontology. 36 (Supplement to No. 6): 1–152. doi:10.1080/02724634.2016.1269539.
- ↑ Miengah Abrahams; Emese M. Bordy; Lara Sciscio; Fabien Knoll (2017). "Scampering, trotting, walking tridactyl bipedal dinosaurs in southern Africa: ichnological account of a Lower Jurassic palaeosurface (upper Elliot Formation, Roma Valley) in Lesotho". Historical Biology: An International Journal of Paleobiology. 29 (7): 958–975. doi:10.1080/08912963.2016.1267164.
- ↑ Makaya M’Voubou; Mathieu Moussavou; Cédric Ligna (2017). "Discovery of dinosaur footprints in the Stanley Pool Formation of Gabon". Geodiversitas. 39 (2): 177–183. doi:10.5252/g2017n2a1.
- ↑ Jeremy E. Martin; Elie Fosso Menkem; Adrien Djomeni; Paul Gustave Fowe; Marie-Joseph Ntamak-Nida (2017). "Dinosaur trackways from the early Late Cretaceous of western Cameroon". Journal of African Earth Sciences. 134: 213–221. doi:10.1016/j.jafrearsci.2017.06.013.
- ↑ Tomasz Skawiński; Maciej Ziegler; Łukasz Czepiński; Marcin Szermański; Mateusz Tałanda; Dawid Surmik; Grzegorz Niedźwiedzki (2017). "A re-evaluation of the historical ‘dinosaur’ remains from the Middle-Upper Triassic of Poland". Historical Biology: An International Journal of Paleobiology. 29 (4): 442–472. doi:10.1080/08912963.2016.1188385.
- ↑ Michael Buckley; Stacey Warwood; Bart van Dongen; Andrew C. Kitchener; Phillip L. Manning (2017). "A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination". Proceedings of the Royal Society B: Biological Sciences. 284 (1855): 20170544. doi:10.1098/rspb.2017.0544.
- ↑ P. J. Bishop; C. J. Clemente; R. E. Weems; D. F. Graham; L. P. Lamas; J. R. Hutchinson; J. Rubenson; R. S. Wilson; S. A. Hocknull; R. S. Barrett; D. G. Lloyd (2017). "Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds". Journal of the Royal Society Interface. 14 (132): 20170276. doi:10.1098/rsif.2017.0276.
- ↑ Juan I. Canale; S. Apesteguía; P.A. Gallina; F.A. Gianechini; A. Haluza (2017). "The oldest theropods from the Neuquén Basin: Predatory dinosaur diversity from the Bajada Colorada Formation (Lower Cretaceous: Berriasian–Valanginian), Neuquén, Argentina". Cretaceous Research. 71: 63–78. doi:10.1016/j.cretres.2016.11.010.
- ↑ Daniel Marty; Matteo Belvedere; Novella L. Razzolini; Martin G. Lockley; Géraldine Paratte; Marielle Cattin; Christel Lovis; Christian A. Meyer (2017). "The tracks of giant theropods (Jurabrontes curtedulensis ichnogen. & ichnosp. nov.) from the Late Jurassic of NW Switzerland: palaeoecological & palaeogeographical implications". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2017.1324438.
- ↑ Novella L. Razzolini; Matteo Belvedere; Daniel Marty; Géraldine Paratte; Christel Lovis; Marielle Cattin; Christian A. Meyer (2017). "Megalosauripus transjuranicus ichnosp. nov. A new Late Jurassic theropod ichnotaxon from NW Switzerland and implications for tridactyl dinosaur ichnology and ichnotaxomy". PLoS ONE. 12 (7): e0180289. doi:10.1371/journal.pone.0180289.
- ↑ Lida Xing; Nasrollah Abbassi; Martin G. Lockley (2017). "Enigmatic didactyl tracks from the Jurassic of Iran". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1339700.
- ↑ Elisabete Malafaia; Fernando Escaso; Pedro Mocho; Alejandro Serrano-Martínez; Angelica Torices; Mário Cachão; Francisco Ortega (2017). "Analysis of diversity, stratigraphic and geographical distribution of isolated theropod teeth from the Upper Jurassic of the Lusitanian Basin, Portugal". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0021-7.
- ↑ Shuo Wang; Josef Stiegler; Romain Amiot; Xu Wang; Guo-hao Du; James M. Clark; Xing Xu (2017). "Extreme Ontogenetic Changes in a Ceratosaurian Theropod". Current Biology. 27 (1): 144–148. doi:10.1016/j.cub.2016.10.043.
- ↑ Ariana Paulina-Carabajal; Leonardo Filippi (2017). "Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.06.013.
- ↑ Leonardo S. Filippi; Ariel H. Méndez; Federico A. Gianechini; Rubén D. Juárez Valieri; Alberto C. Garrido (2017). "Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.07.019.
- ↑ Rafael Delcourt (2017). "Revised morphology of Pycnonemosaurus nevesi Kellner & Campos, 2002 (Theropoda: Abelisauridae) and its phylogenetic relationships". Zootaxa. 4276 (1): 1–45. doi:10.11646/zootaxa.4276.1.1.
- ↑ Sara H. Burch (2017). "Myology of the forelimb of Majungasaurus crenatissimus (Theropoda, Abelisauridae) and the morphological consequences of extreme limb reduction". Journal of Anatomy. in press. doi:10.1111/joa.12660.
- ↑ Nicolás R. Chimento; Federico L. Agnolin; Fernando E. Novas; Martín D. Ezcurra; Leonardo Salgado; Marcelo P. Isasi; Manuel Suárez; Rita De La Cruz; David Rubilar-Rogers; Alexander O. Vargas (2017). "Forelimb posture in Chilesaurus diegosuarezi (Dinosauria, Theropoda) and its behavioral and phylogenetic implications". Ameghiniana. in press. doi:10.5710/AMGH.11.06.2017.3088.
- ↑ David William Elliott Hone; Thomas Richard Holtz Jr (2017). "A Century of Spinosaurs - A Review and Revision of the Spinosauridae with Comments on Their Ecology". Acta Geologica Sinica (English Edition). 91 (3): 1120–1132. doi:10.1111/1755-6724.13328.
- ↑ Marcos A.F. Sales; Alexandre Liparini; Marco B. De Andrade; Paulo R.L. Aragão; Cesar L. Schultz (2017). "The oldest South American occurrence of Spinosauridae (Dinosauria, Theropoda)". Journal of South American Earth Sciences. 74: 83–88. doi:10.1016/j.jsames.2016.10.005.
- ↑ Andrea Cau; Paolo Serventi (2017). "Origin attachments of the caudofemoralis longus muscle in the Jurassic dinosaur Allosaurus". Acta Palaeontologica Polonica. 62 (2): 273–277. doi:10.4202/app.00362.2017.
- ↑ Chris Tijani Barker; Darren Naish; Elis Newham; Orestis L. Katsamenis; Gareth Dyke (2017). "Complex neuroanatomy in the rostrum of the Isle of Wight theropod Neovenator salerii". Scientific Reports. 7: Article number 3749. doi:10.1038/s41598-017-03671-3.
- ↑ Ariana Paulina-Carabajal; Philip J. Currie (2017). "The braincase of the theropod dinosaur Murusraptor: osteology, neuroanatomy and comments on the paleobiological implications of certain endocranial features". Ameghiniana. in press. doi:10.5710/AMGH.25.03.2017.3062.
- ↑ Fiann M. Smithwick; Gerald Mayr; Evan T. Saitta; Michael J. Benton; Jakob Vinther (2017). "On the purported presence of fossilized collagen fibres in an ichthyosaur and a theropod dinosaur". Palaeontology. 60 (3): 409–422. doi:10.1111/pala.12292.
- ↑ Phil R. Bell ; Nicolás E. Campione ; W. Scott Persons ; Philip J. Currie ; Peter L. Larson ; Darren H. Tanke; Robert T. Bakker (2017). "Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution". Biology Letters. 13 (6): 20170092. doi:10.1098/rsbl.2017.0092.
- ↑ Paul M. Gignac; Gregory M. Erickson (2017). "The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus rex". Scientific Reports. 7: Article number 2012. doi:10.1038/s41598-017-02161-w.
- ↑ William I. Sellers; Stuart B. Pond; Charlotte A. Brassey; Philip L. Manning; Karl T. Bates (2017). "Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis". PeerJ. 5: e3420. doi:10.7717/peerj.3420.
- ↑ Chase Doran Brownstein (2017). "Description of Arundel Clay ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": biogeographic implications". PeerJ. 5: e3110. doi:10.7717/peerj.3110.
- ↑ Bradley McFeeters; Michael J. Ryan; Claudia Schröder-Adams; Philip J. Currie (2017). "First North American occurrences of Qiupalong (Theropoda: Ornithomimidae) and the palaeobiogeography of derived ornithomimids". FACETS. 2: 355–373. doi:10.1139/facets-2016-0074.
- ↑ Stephan Lautenschlager (2017). "Functional niche partitioning in Therizinosauria provides new insights into the evolution of theropod herbivory". Palaeontology. 60 (3): 375–387. doi:10.1111/pala.12289.
- ↑ Moussa Masrour; Noura Lkebir; Félix Pérez-Lorente (2017). "Anza palaeoichnological site. Late Cretaceous. Morocco. Part II. Problems of large dinosaur trackways and the first African Macropodosaurus trackway". Journal of African Earth Sciences. in press. doi:10.1016/j.jafrearsci.2017.04.019.
- ↑ Romain Amiot; Xu Wang; Shuo Wang; Christophe Lécuyer; Jean-Michel Mazin; Jinyou Mo; Jean-Pierre Flandrois; François Fourel; Xiaolin Wang; Xing Xu; Zhijun Zhang; Zhonghe Zhou (2017). "δ18O-derived incubation temperatures of oviraptorosaur eggs". Palaeontology. 60 (5): 633–647. doi:10.1111/pala.12311.
- ↑ Federico A. Gianechini; Peter J. Makovicky; Sebastián Apesteguía (2017). "The cranial osteology of Buitreraptor gonzalezorum Makovicky, ApesteguÍa, and AgnolÍn, 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia, Argentina". Journal of Vertebrate Paleontology. 37 (1): e1255639. doi:10.1080/02724634.2017.1255639.
- ↑ Fernando E. Novas; Federico Brissón Egli; Federico L. Agnolin; Federico A. Gianechini; Ignacio Cerda (2017). "Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Coelurosauria)". Cretaceous Research. in press. doi:10.1016/j.cretres.2017.06.003.
- ↑ Federico Brissón Egli; Alexis M. Aranciaga Rolando; Federico L. Agnolín; Fernando E. Novas (2017). "Osteology of the unenlagiid theropod Neuquenraptor argentinus from the Late Cretaceous of Patagonia". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00348.2017.
- ↑ Xiaoli Wang; Michael Pittman; Xiaoting Zheng; Thomas G. Kaye; Amanda R. Falk; Scott A. Hartman; Xing Xu (2017). "Basal paravian functional anatomy illuminated by high-detail body outline". Nature Communications. 8: Article number 14576. doi:10.1038/ncomms14576.
- ↑ Rui Pei; Quanguo Li; Qingjin Meng; Mark A. Norell; Ke-Qin Gao (2017). "New specimens of Anchiornis huxleyi (Theropoda, Paraves) from the late Jurassic of northeastern China". Bulletin of the American Museum of Natural History. 411: 1–66. doi:10.1206/0003-0090-411.1.1.
- ↑ David J. Button; Paul M. Barrett; Emily J. Rayfield (2017). "Craniodental functional evolution in sauropodomorph dinosaurs". Paleobiology. 43 (3): 435–462. doi:10.1017/pab.2017.4.
- ↑ Ignacio Alejandro Cerda; Anusuya Chinsamy; Diego Pol; Cecilia Apaldetti; Alejandro Otero; Jaime Eduardo Powell; Ricardo Nestor Martínez (2017). "Novel insight into the origin of the growth dynamics of sauropod dinosaurs". PLoS ONE. 12 (6): e0179707. doi:10.1371/journal.pone.0179707.
- ↑ Paul V. Ullmann; Matthew F. Bonnan; Kenneth J. Lacovara (2017). "Characterizing the Evolution of Wide-Gauge Features in Stylopodial Limb Elements of Titanosauriform Sauropods via Geometric Morphometrics". The Anatomical Record. in press. doi:10.1002/ar.23607.
- ↑ Yao-Chang Lee; Cheng-Cheng Chiang; Pei-Yu Huang; Chao-Yu Chung; Timothy D. Huang; Chun-Chieh Wang; Ching-Iue Chen; Rong-Seng Chang; Cheng-Hao Liao; Robert R. Reisz (2017). "Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy". Nature Communications. 8: Article number 14220. doi:10.1038/ncomms14220.
- ↑ Attila Ősi; Zoltán Csiki-Sava; Edina Prondvai (2017). "A Sauropod Tooth from the Santonian of Hungary and the European Late Cretaceous ‘Sauropod Hiatus’". Scientific Reports. 7: Article number 3261. doi:10.1038/s41598-017-03602-2.
- ↑ Hemant Sonkusare; Bandana Samant; D. M. Mohabey (2017). "Microflora from sauropod coprolites and associated sediments of Late Cretaceous (Maastrichtian) Lameta Formation of Nand-Dongargaon basin, Maharashtra". Journal of the Geological Society of India. 89 (4): 391–397. doi:10.1007/s12594-017-0620-0.
- ↑ Gregory S. Paul (2017). "Restoring Maximum Vertical Browsing Reach in Sauropod Dinosaurs". The Anatomical Record. in press. doi:10.1002/ar.23617.
- ↑ John Fronimos; Jeffrey Wilson (2017). "Concavo-convex intercentral joints stabilize the vertebral column in sauropod dinosaurs and crocodylians". Ameghiniana. 54 (2): 151–176. doi:10.5710/AMGH.12.09.2016.3007.
- ↑ John Fronimos; Jeffrey Wilson (2017). "Neurocentral suture complexity and stress distribution in the vertebral column of a sauropod dinosaur". Ameghiniana. 54 (1): 36–49. doi:10.5710/AMGH.05.09.2016.3009.
- ↑ D. Cary Woodruff (2017). "Nuchal ligament reconstructions in diplodocid sauropods support horizontal neck feeding postures". Historical Biology: An International Journal of Paleobiology. 29 (3): 308–319. doi:10.1080/08912963.2016.1158257.
- ↑ Gina M. Hanik; Matthew C. Lamanna; John A. Whitlock (2017). "A Juvenile Specimen of Barosaurus Marsh, 1890 (Sauropoda: Diplodocidae) from the Upper Jurassic Morrison Formation of Dinosaur National Monument, Utah, USA". Annals of Carnegie Museum. 84 (3): 253–263. doi:10.2992/007.084.0301.
- ↑ Lucio M. Ibiricu; Matthew C. Lamanna; Rubén D.F. Martínez; Gabriel A. Casal; Ignacio A. Cerda; Gastón Martínez; Leonardo Salgado (2017). "A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae". Acta Palaeontologica Polonica. 62 (2): 221–236. doi:10.4202/app.00316.2016.
- ↑ P. Mocho; A. Pérez-García; J. M. Gasulla; F. Ortega (2017). "High sauropod diversity in the upper Barremian Arcillas de Morella Formation (Maestrat Basin, Spain) revealed by a systematic review of historical material". Journal of Iberian Geology. in press. doi:10.1007/s41513-017-0012-8.
- ↑ Kayleigh Wiersma; P. Martin Sander (2017). "The dentition of a well-preserved specimen of Camarasaurus sp.: implications for function, tooth replacement, soft part reconstruction, and food intake". PalZ. 91 (1): 145–161. doi:10.1007/s12542-016-0332-6.
- ↑ D. Cary Woodruff; John R. Foster (2017). "The first specimen of Camarasaurus (Dinosauria: Sauropoda) from Montana: The northernmost occurrence of the genus". PLoS ONE. 12 (5): e0177423. doi:10.1371/journal.pone.0177423.
- ↑ P. Mocho; R. Royo-Torres; F. Ortega (2017). "New data of the Portuguese brachiosaurid Lusotitan atalaiensis (Sobral Formation, Upper Jurassic)". Historical Biology: An International Journal of Paleobiology. 29 (6): 789–817. doi:10.1080/08912963.2016.1247447.
- ↑ Stephen F. Poropat; Jay P. Nair; Caitlin E. Syme; Philip D. Mannion; Paul Upchurch; Scott A. Hocknull; Alex G. Cook; Travis R. Tischler; Timothy Holland (2017). "Reappraisal of Austrosaurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1334826.
- ↑ Flavio Bellardini; Ignacio A. Cerda (2017). "Bone histology sheds light on the nature of the “dermal armor” of the enigmatic sauropod dinosaur Agustinia ligabuei Bonaparte, 1999". The Science of Nature. 104 (1–2): Article 1. doi:10.1007/s00114-016-1423-7.
- ↑ Rodolfo A. García; Ignacio A. Cerda; Matías Heller; Bruce M. Rothschild; Virginia Zurriaguz (2017). "The first evidence of osteomyelitis in a sauropod dinosaur". Lethaia. 50 (2): 227–236. doi:10.1111/let.12189.
- ↑ Daniel Vidal; Francisco Ortega; Francisco Gascó; Alejandro Serrano-Martínez; José Luis Sanz (2017). "The internal anatomy of titanosaur osteoderms from the Upper Cretaceous of Spain is compatible with a role in oogenesis". Scientific Reports. 7: Article number 42035. doi:10.1038/srep42035.
- ↑ Ronald S. Tykoski; Anthony R. Fiorillo (2017). "An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America's last giant sauropod". Journal of Systematic Palaeontology. 15 (5): 339–364. doi:10.1080/14772019.2016.1183150.
- ↑ Matthew G. Baron; David B. Norman; Paul M. Barrett (2017). "Postcranial anatomy of Lesothosaurus diagnosticus (Dinosauria: Ornithischia) from the Lower Jurassic of southern Africa: implications for basal ornithischian taxonomy and systematics". Zoological Journal of the Linnean Society. 179 (1): 125–168. doi:10.1111/zoj.12434.
- ↑ Lara Sciscio; Fabien Knoll; Emese M. Bordy; Michiel O. de Kock; Ragna Redelstorff (2017). "Digital reconstruction of the mandible of an adult Lesothosaurus diagnosticus with insight into the tooth replacement process and diet". PeerJ. 5: e3054. doi:10.7717/peerj.3054.
- ↑ Thomas J. Raven; Susannah C. R. Maidment (2017). "A new phylogeny of Stegosauria (Dinosauria, Ornithischia)". Palaeontology. 60 (3): 401–408. doi:10.1111/pala.12291.
- ↑ Peter M. Galton (2017). "Purported earliest bones of a plated dinosaur (Ornithischia: Stegosauria): a "dermal tail spine" and a centrum from the Aalenian-Bajocian (Middle Jurassic) of England, with comments on other early thyreophorans". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 1–10. doi:10.1127/njgpa/2017/0667.
- ↑ Peter M. Galton; Krishnan Ayyasami (2017). "Purported latest bone of a plated dinosaur (Ornithischia: Stegosauria), a "dermal plate" from the Maastrichtian (Upper Cretaceous) of southern India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (1): 91–96. doi:10.1127/njgpa/2017/0671.
- ↑ Yandong Hou; Shu'an Ji (2017). "New findings of stegosaurs from the Lower Cretaceous Luohandong Formation in the Ordos Basin, Inner Mongolia". Geological Bulletin of China. 36 (7): 1097–1103.
- ↑ Attila Ősi; Edina Prondvai; Jordan Mallon; Emese Réka Bodor (2017). "Diversity and convergences in the evolution of feeding adaptations in ankylosaurs (Dinosauria: Ornithischia)". Historical Biology: An International Journal of Paleobiology. 29 (4): 539–570. doi:10.1080/08912963.2016.1208194.
- ↑ Heitor Francischini; Marcos A. F. Sales; Paula Dentzien–Dias; Cesar L. Schultz (2017). "The Presence of Ankylosaur Tracks in the Guará Formation (Brazil) and Remarks on the Spatial and Temporal Distribution of Late Jurassic Dinosaurs". Ichnos: An International Journal for Plant and Animal Traces. in press. doi:10.1080/10420940.2017.1337573.
- ↑ Jingtao Yang; Hailu You; Li Xie; Hongrui Zhou (2017). "A new specimen of Crichtonpelta benxiensis (Dinosauria: Ankylosaurinae) from the mid-Cretaceous of Liaoning Province, China". Acta Geologica Sinica (English Edition). 91 (3): 781–790. doi:10.1111/1755-6724.13308.
- ↑ Gregory M. Erickson; Darla K. Zelenitsky; David Ian Kay; Mark A. Norell (2017). "Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development". Proceedings of the National Academy of Sciences of the United States of America. 114 (3): 540–545. doi:10.1073/pnas.1613716114.
- ↑ Attila Virág; Attila Ősi (2017). "Morphometry, microstructure, and wear pattern of neornithischian dinosaur teeth from the Upper Cretaceous Iharkút locality (Hungary)". The Anatomical Record. 300 (8): 1439–1463. doi:10.1002/ar.23592.
- ↑ Martin D. Brasier; David B. Norman; Alexander G. Liu; Laura J. Cotton; Jamie E. H. Hiscocks; Russell J. Garwood; Jonathan B. Antcliffe; David Wacey (2017). "Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur". In A. T. Brasier; D. McIlroy; N. McLoughlin. Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier. The Geological Society of London. pp. 383–398. ISBN 978-1-78620-279-6. doi:10.1144/SP448.3.
- ↑ Francisco Javier Verdú; Pascal Godefroit; Rafael Royo-Torres; Alberto Cobos; Luis Alcalá (2017). "Individual variation in the postcranial skeleton of the Early Cretaceous Iguanodon bernissartensis (Dinosauria: Ornithopoda)". Cretaceous Research. 74: 65–86. doi:10.1016/j.cretres.2017.02.006.
- ↑ Filippo Bertozzo; Fabio Marco Dalla Vecchia; Matteo Fabbri (2017). "The Venice specimen of Ouranosaurus nigeriensis (Dinosauria, Ornithopoda)". PeerJ. 5: e3403. doi:10.7717/peerj.3403.
- ↑ Andrew T. McDonald; Terry A. Gates; Lindsay E. Zanno; Peter J. Makovicky (2017). "Anatomy, taphonomy, and phylogenetic implications of a new specimen of Eolambia caroljonesa (Dinosauria: Ornithopoda) from the Cedar Mountain Formation, Utah, USA". PLoS ONE. 12 (5): e0176896. doi:10.1371/journal.pone.0176896.
- ↑ Hai Xing; Jordan C. Mallon; Margaret L. Currie (2017). "Supplementary cranial description of the types of Edmontosaurus regalis (Ornithischia: Hadrosauridae), with comments on the phylogenetics and biogeography of Hadrosaurinae". PLoS ONE. 12 (4): e0175253. doi:10.1371/journal.pone.0175253.
- ↑ Elena R. Schroeter; Caroline J. DeHart; Timothy P. Cleland; Wenxia Zheng; Paul M. Thomas; Neil L. Kelleher; Marshall Bern; Mary H. Schweitzer (2017). "Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein". Journal of Proteome Research. 16 (2): 920–932. doi:10.1021/acs.jproteome.6b00873.
- ↑ Ryuji Takasaki; Kentaro Chiba; Yoshitsugu Kobayashi; Philip J. Currie; Anthony R. Fiorillo (2017). "Reanalysis of the phylogenetic status of Nipponosaurus sachalinensis (Ornithopoda: Dinosauria) from the Late Cretaceous of Southern Sakhalin". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1317766.
- ↑ Katherine Bramble; Philip J. Currie; Darren H. Tanke; Angelica Torices (2017). "Reuniting the "head hunted" Corythosaurus excavatus (Dinosauria: Hadrosauridae) holotype skull with its dentary and postcranium". Cretaceous Research. 76: 7–18. doi:10.1016/j.cretres.2017.04.006.
- ↑ Leonardo Maiorino; Andrew A. Farke; Tassos Kotsakis; Paolo Piras (2017). "Macroevolutionary patterns in cranial and lower jaw shape of ceratopsian dinosaurs (Dinosauria, Ornithischia): phylogeny, morphological integration, and evolutionary rates". Evolutionary Ecology Research. 18: 123–167.
- ↑ Andrew A. Farke; George E. Phillips (2017). "The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA)". PeerJ. 5: e3342. doi:10.7717/peerj.3342.
- ↑ Kim, Jung-Kyun; Kwon, Yong-Eun; Lee, Sang-Gil; Lee, Ji-Hyun; Kim, Jin-Gyu; Huh, Min; Lee, Eunji; Kim, Youn-Joong (2017). "Disparities in correlating microstructural to nanostructural preservation of dinosaur femoral bones". Scientific Reports. 7: 45562. doi:10.1038/srep45562.
- 1 2 Aaron J. van der Reest; Philip J. Currie (2017). "Troodontids (Theropoda) from the Dinosaur Park Formation, Alberta, with a description of a unique new taxon: implications for deinonychosaur diversity in North America". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2017-0031.
- ↑ Chinzorig Tsogtbaatar; Yoshitsugu Kobayashi; Tsogtbaatar Khishigjav; Philip J. Currie; Mahito Watabe; Barsbold Rinchen (2017). "First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia". Scientific Reports. 7: Article number 5835. doi:10.1038/s41598-017-05272-6.
- ↑ David C. Evans; Thomas M. Cullen; Derek W. Larson; Adam Rego (2017). "A new species of troodontid theropod (Dinosauria: Maniraptora) from the Horseshoe Canyon Formation (Maastrichtian) of Alberta, Canada". Canadian Journal of Earth Sciences. 54 (8): 813–826. doi:10.1139/cjes-2017-0034.
- ↑ Hanyong Pu; Darla K. Zelenitsky; Junchang Lü; Philip J. Currie; Kenneth Carpenter; Li Xu; Eva B. Koppelhus; Songhai Jia; Le Xiao; Huali Chuang; Tianran Li; Martin Kundrát; Caizhi Shen (2017). "Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China". Nature Communications. 8: Article number 14952. doi:10.1038/ncomms14952.
- ↑ Penélope Cruzado-Caballero; Jaime Powell (2017). "Bonapartesaurus rionegrensis, a new hadrosaurine dinosaur from South America: implications for phylogenetic and biogeographic relations with North America". Journal of Vertebrate Paleontology. 37 (2): e1289381. doi:10.1080/02724634.2017.1289381.
- ↑ Caleb M. Brown; Donald M. Henderson; Jakob Vinther; Ian Fletcher; Ainara Sistiaga; Jorsua Herrera; Roger E. Summons (2017). "An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics". Current Biology. doi:10.1016/j.cub.2017.06.071.
- ↑ Nicholas R. Longrich; Xabier Pereda-Suberbiola; Nour-Eddine Jalil; Fatima Khaldoune; Essaid Jourani (2017). "An abelisaurid from the latest Cretaceous (late Maastrichtian) of Morocco, North Africa". Cretaceous Research. 76: 40–52. doi:10.1016/j.cretres.2017.03.021.
- ↑ Junchang Lü; Guoqing Li; Martin Kundrát; Yuong-Nam Lee; Zhenyuan Sun; Yoshitsugu Kobayashi; Caizhi Shen; Fangfang Teng; Hanfeng Liu (2017). "High diversity of the Ganzhou oviraptorid fauna increased by a new “cassowary-like” crested species". Scientific Reports. 7: Article number 6393. doi:10.1038/s41598-017-05016-6.
- ↑ Caizhi Shen; Junchang Lü; Sizhao Liu; Martin Kundrát; Stephen L. Brusatte; Hailong Gao (2017). "A new troodontid dinosaur from the Lower Cretaceous Yixian Formation of Liaoning Province, China". Acta Geologica Sinica (English Edition). 91 (3): 763–780. doi:10.1111/1755-6724.13307.
- ↑ Thomas D. Carr; David J. Varricchio; Jayc C. Sedlmayr; Eric M. Roberts; Jason R. Moore (2017). "A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system". Scientific Reports. 7: Article number 44942. doi:10.1038/srep44942.
- ↑ Fidel Torcida Fernández-Baldor; José Ignacio Canudo; Pedro Huerta; Miguel Moreno-Azanza; Diego Montero (2017). "Europatitan eastwoodi;, a new sauropod from the lower Cretaceous of Iberia in the initial radiation of somphospondylans in Laurasia". PeerJ. 5: e3409. doi:10.7717/peerj.3409.
- ↑ Emanuel Tschopp; Octávio Mateus (2017). "Osteology of Galeamopus pabsti sp. nov. (Sauropoda: Diplodocidae), with implications for neurocentral closure timing, and the cervico-dorsal transition in diplodocids". PeerJ. 5: e3179. doi:10.7717/peerj.3179.
- ↑ Leonardo Salgado; José I. Canudo; Alberto C. Garrido; Miguel Moreno-Azanza; Leandro C. A. Martínez; Rodolfo A. Coria; José M. Gasca (2017). "A new primitive Neornithischian dinosaur from the Jurassic of Patagonia with gut contents". Scientific Reports. 7: Article number 42778. doi:10.1038/srep42778.
- ↑ Xing Xu; Philip Currie; Michael Pittman; Lida Xing; Qingjin Meng; Junchang Lü; Dongyu Hu; Congyu Yu (2017). "Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features". Nature Communications. 8: Article number 14972. doi:10.1038/ncomms14972.
- ↑ Cai-zhi Shen; Bo Zhao; Chun-ling Gao; Jun-chang Lü; Martin Kundrát (2017). "A New Troodontid Dinosaur (Liaoningvenator curriei gen. et sp. nov.) from the Early Cretaceous Yixian Formation in Western Liaoning Province". Acta Geoscientica Sinica. 38 (3): 359–371. doi:10.3975/cagsb.2017.03.06.
- ↑ Ricardo N. Martínez; Cecilia Apaldetti (2017). "A late Norian-Rhaetian coelophysid neotheropod (Dinosauria, Saurischia) from the Quebrada del Barro Formation, northwestern Argentina". Ameghiniana. in press. doi:10.5710/AMGH.09.04.2017.3065.
- ↑ Brooks B. Britt; Rodney D. Scheetz; Michael F. Whiting; D. Ray Wilhite (2017). "Moabosaurus utahensis, n. gen., n. sp., a new sauropod from the Early Cretaceous (Aptian) of North America". Contributions from the Museum of Paleontology, University of Michigan. 32 (11): 189–243.
- ↑ José L. Carballido; Diego Pol; Alejandro Otero; Ignacio A. Cerda; Leonardo Salgado ; Alberto C. Garrido ; Jahandar Ramezani ; Néstor R. Cúneo ; Javier M. Krause (2017). "A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 284 (1860): 20171219. doi:10.1098/rspb.2017.1219.
- ↑ Guo-Fu Wang; Hai-Lu You; Shi-Gang Pan; Tao Wang (2017). "A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China". Vertebrata PalAsiatica. 55 (2): 177–186.
- ↑ Paul Penkalski; Tatiana Tumanova (2017). "The cranial morphology and taxonomic status of Tarchia (Dinosauria: Ankylosauridae) from the Upper Cretaceous of Mongolia". Cretaceous Research. 70: 117–127. doi:10.1016/j.cretres.2016.10.004.
- ↑ Chan-gyu Yun (2017). "Teihivenator gen. nov., a new generic name for the tyrannosauroid dinosaur "Laelaps" macropus (Cope, 1868; preoccupied by Koch, 1836)". Journal of Zoological And Bioscience Research. 4 (2): 7–13. doi:10.24896/jzbr.2017422.
- ↑ Chase D. Brownstein (2017). "Theropod specimens from the Navesink Formation and their implications for the diversity and biogeography of ornithomimosaurs and tyrannosauroids on Appalachia". PeerJ Preprints. 5: e3105v1. doi:10.7287/peerj.preprints.3105v1.
- ↑ Alexander Averianov; Pavel Skutschas (2017). "A new lithostrotian titanosaur (Dinosauria, Sauropoda) from the Early Cretaceous of Transbaikalia, Russia". Biological Communications. 62 (1): 6–18. doi:10.21638/11701/spbu03.2017.102.
- ↑ Ismar de Souza Carvalho; Leonardo Salgado; Rafael Matos Lindoso; Hermínio Ismael de Araújo-Júnior; Francisco Cézar Costa Nogueira; José Agnelo Soares (2017). "A new basal titanosaur (Dinosauria, Sauropoda) from the Lower Cretaceous of Brazil". Journal of South American Earth Sciences. 75: 74–84. doi:10.1016/j.jsames.2017.01.010.
- ↑ Philip D. Mannion; Ronan Allain; Olivier Moine (2017). "The earliest known titanosauriform sauropod dinosaur and the evolution of Brachiosauridae". PeerJ. 5: e3217. doi:10.7717/peerj.3217.
- ↑ Ya-Ming Wang; Hai-Lu You; Tao Wang (2017). "A new basal sauropodiform dinosaur from the Lower Jurassic of Yunnan Province, China". Scientific Reports. 7: Article number 41881. doi:10.1038/srep41881.
- ↑ Héctor E. Rivera-Sylva; Eberhard Frey; Wolfgang Stinnesbeck; José Rubén Guzmán-Gutiérrez; Arturo H. González-González (2017). "Mexican ceratopsids: Considerations on their diversity and evolution". Journal of South American Earth Sciences. 75: 66–73. doi:10.1016/j.jsames.2017.01.008.
- ↑ Xing Xu; Zi-Chuan Qin (2017). "A new tiny dromaeosaurid dinosaur from the Lower Cretaceous Jehol Group of western Liaoning and niche differentiation among the Jehol dromaeosaurids". Vertebrata PalAsiatica. 55 (2): 129–144.
- ↑ Run-Fu Wang; Hai-Lu You; Suo-Zhu Wang; Shi-Chao Xu; Jian Yi; Li-Juan Xie; Lei Jia; Hai Xing (2017). "A second hadrosauroid dinosaur from the early Late Cretaceous of Zuoyun, Shanxi Province, China". Historical Biology: An International Journal of Paleobiology. 29 (1): 17–24. doi:10.1080/08912963.2015.1118688.
- ↑ Victoria M. Arbour; David C. Evans (2017). "A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation". Royal Society Open Science. 4 (5): 161086. doi:10.1098/rsos.161086.
- ↑ Francisco J. Serrano; Paul Palmqvist; Luis M. Chiappe; José L. Sanz (2017). "Inferring flight parameters of Mesozoic avians through multivariate analyses of forelimb elements in their living relatives". Paleobiology. 43 (1): 144–169. doi:10.1017/pab.2016.35.
- ↑ Tao Zhao; Di Liu; Zhiheng Li (2017). "Correlated evolution of sternal keel length and ilium length in birds". PeerJ. 5: e3622. doi:10.7717/peerj.3622.
- ↑ Gerald Mayr (2017). "Pectoral girdle morphology of Mesozoic birds and the evolution of the avian supracoracoideus muscle". Journal of Ornithology. in press. doi:10.1007/s10336-017-1451-x.
- ↑ Wei Wang; Jingmai O'Connor (2017). "Morphological coevolution of the pygostyle and tail feathers in Early Cretaceous birds". Vertebrata PalAsiatica. in press.
- ↑ Ikuko Tanaka (2017). "Ecological implications of the correlation of avian footprints with wing characteristics: a mathematical approach". Palaeontology. 60 (2): 187–197. doi:10.1111/pala.12276.
- ↑ Takanobu Tsuihiji (2017). "The atlas rib in Archaeopteryx and its evolutionary implications". Journal of Vertebrate Paleontology. in press: e1342093. doi:10.1080/02724634.2017.1342093.
- ↑ Antoine Louchart; Joane Pouech (2017). "A tooth of Archaeopterygidae (Aves) from the Lower Cretaceous of France extends the spatial and temporal occurrence of the earliest birds". Cretaceous Research. 73: 40–46. doi:10.1016/j.cretres.2017.01.004.
- ↑ Yan Wang; Han Hu; Jingmai K. O'Connor; Min Wang; Xing Xu; Zhonghe Zhou; Xiaoli Wang; Xiaoting Zheng (2017). "A previously undescribed specimen reveals new information on the dentition of Sapeornis chaoyangensis". Cretaceous Research. 74: 1–10. doi:10.1016/j.cretres.2016.12.012.
- ↑ Francisco José Serrano; Luis María Chiappe (2017). "Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution". Journal of the Royal Society Interface. 14 (132): 20170182. doi:10.1098/rsif.2017.0182.
- ↑ Romain Amiot; Delphine Angst; Serge Legendre; Eric Buffetaut; François Fourel; Jan Adolfssen; Aurore André; Ana Voica Bojar; Aurore Canoville; Abel Barral; Jean Goedert; Stanislaw Halas; Nao Kusuhashi; Ekaterina Pestchevitskaya; Kevin Rey; Aurélien Royer; Antônio Álamo Feitosa Saraiva; Bérengère Savary-Sismondini; Jean-Luc Siméon; Alexandra Touzeau; Zhonghe Zhou; Christophe Lécuyer (2017). "Oxygen isotope fractionation between bird bone phosphate and drinking water". The Science of Nature. 104 (5–6): Article 47. doi:10.1007/s00114-017-1468-2.
- ↑ Baoyu Jiang; Tao Zhao; Sophie Regnault; Nicholas P. Edwards; Simon C. Kohn; Zhiheng Li; Roy A. Wogelius; Michael J. Benton; John R. Hutchinson (2017). "Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis". Nature Communications. 8: Article number 14779. doi:10.1038/ncomms14779.
- ↑ Xiaoting Zheng; Jingmai K. O’Connor; Xiaoli Wang; Yanhong Pan; Yan Wang; Min Wang; Zhonghe Zhou (2017). "Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications". National Science Review. in press. doi:10.1093/nsr/nwx004.
- ↑ Jingmai O'Connor; Xiao-Ring Zheng; Han Hu; Xiao-Li Wang; Zhong-He Zhou (2017). "The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans". Vertebrata PalAsiatica. 55 (1): 41–58.
- ↑ Jennifer A. Peteya; Julia A. Clarke; Quanguo Li; Ke-Qin Gao; Matthew D. Shawkey (2017). "The plumage and colouration of an enantiornithine bird from the Early Cretaceous of China". Palaeontology. 60 (1): 55–71. doi:10.1111/pala.12270.
- ↑ Lida Xing; Jingmai K. O'Connor; Ryan C. McKellar; Luis M. Chiappe; Kuowei Tseng; Gang Li; Ming Bai (2017). "A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage". Gondwana Research. 49: 264–277. doi:10.1016/j.gr.2017.06.001.
- ↑ Min Wang; Zhonghe Zhou (2017). "A new adult specimen of the basalmost ornithuromorph bird Archaeorhynchus spathula (Aves: Ornithuromorpha) and its implications for early avian ontogeny". Journal of Systematic Palaeontology. 15 (1): 1–18. doi:10.1080/14772019.2015.1136968.
- ↑ Nikita V. Zelenkov; Alexander O. Averianov; Evgeny V. Popov (2017). "An Ichthyornis-like bird from the earliest Late Cretaceous (Cenomanian) of European Russia". Cretaceous Research. 75: 94–100. doi:10.1016/j.cretres.2017.03.011.
- ↑ Delphine Angst; Eric Buffetaut; J. Carmelo Corral; Xabier Pereda-Suberbiola (2017). "First record of the Late Cretaceous giant bird Gargantuavis philoinos from the Iberian Peninsula". Annales de Paléontologie. 103 (2): 135–139. doi:10.1016/j.annpal.2017.01.003.
- ↑ Gerald Mayr (2017). "The early Eocene birds of the Messel fossil site: a 48 million-year-old bird community adds a temporal perspective to the evolution of tropical avifaunas". Biological Reviews. 92 (2): 1174–1188. PMID 27062331. doi:10.1111/brv.12274.
- ↑ Trevor H. Worthy; Vanesa De Pietri; R. Paul Scofield (2017). "Recent advances in avian palaeobiology in New Zealand with implications for understanding New Zealand’s geological, climatic and evolutionary histories". New Zealand Journal of Zoology. 44 (3): 177–211. doi:10.1080/03014223.2017.1307235.
- ↑ Nikita V. Zelenkov (2017). "Evolution of Bird Communities in the Neogene of Central Asia, with a Review of the Neogene Fossil Record of Asian Birds". Paleontological Journal. 50 (12): 1421–1433. doi:10.1134/s0031030116120200.
- ↑ Johan A. Gren; Peter Sjövall; Mats E. Eriksson; Rene L. Sylvestersen; Federica Marone; Kajsa G. V. Sigfridsson Clauss; Gavin J. Taylor; Stefan Carlson; Per Uvdal; Johan Lindgren (2017). "Molecular and microstructural inventory of an isolated fossil bird feather from the Eocene Fur Formation of Denmark". Palaeontology. 60 (1): 73–90. doi:10.1111/pala.12271.
- ↑ Takahiro Yonezawa; Takahiro Segawa; Hiroshi Mori; Paula F. Campos; Yuichi Hongoh; Hideki Endo; Ayumi Akiyoshi; Naoki Kohno; Shin Nishida; Jiaqi Wu; Haofei Jin; Jun Adachi; Hirohisa Kishino; Ken Kurokawa; Yoshifumi Nogi; Hideyuki Tanabe; Harutaka Mukoyama; Kunio Yoshida; Armand Rasoamiaramanana; Satoshi Yamagishi; Yoshihiro Hayashi; Akira Yoshida; Hiroko Koike; Fumihito Akishinonomiya; Eske Willerslev; Masami Hasegawa (2017). "Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites". Current Biology. 27 (1): 68–77. PMID 27989673. doi:10.1016/j.cub.2016.10.029.
- ↑ Alicia Grealy; Matthew Phillips; Gifford Miller; M. Thomas P. Gilbert; Jean-Marie Rouillard; David Lambert; Michael Bunce; James Haile (2017). "Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell". Molecular Phylogenetics and Evolution. 109: 151–163. doi:10.1016/j.ympev.2017.01.005.
- ↑ Federico L. Agnolin (2017). "Unexpected diversity of ratites (Aves, Palaeognathae) in the early Cenozoic of South America: palaeobiogeographical implications". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 101–111. doi:10.1080/03115518.2016.1184898.
- ↑ Sonal Jain; Niraj Rai; Giriraj Kumar; Parul Aggarwal Pruthi; Kumarasamy Thangaraj; Sunil Bajpai; Vikas Pruthi (2017). "Ancient DNA Reveals Late Pleistocene Existence of Ostriches in Indian Sub-Continent". PLoS ONE. 12 (3): e0164823. doi:10.1371/journal.pone.0164823.
- ↑ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2017). "Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1348503.
- ↑ Marco Pavia; Hanneke J. M. Meijer; Maria Adelaide Rossi; Ursula B. Göhlich (2017). "The extreme insular adaptation of Garganornis ballmanni Meijer, 2014: a giant Anseriformes of the Neogene of the Mediterranean Basin". Royal Society Open Science. 4 (1): 160722. doi:10.1098/rsos.160722.
- ↑ Junya Watanabe (2017). "Quantitative discrimination of flightlessness in fossil Anatidae from skeletal proportions". The Auk. 134 (3): 672–695. doi:10.1642/AUK-17-23.1.
- ↑ Nicolas J. Rawlence; Afroditi Kardamaki; Luke J. Easton; Alan J. D. Tennyson; R. Paul Scofield; Jonathan M. Waters (2017). "Ancient DNA and morphometric analysis reveal extinction and replacement of New Zealand's unique black swans". Proceedings of the Royal Society B: Biological Sciences. 284 (1859): 20170876. doi:10.1098/rspb.2017.0876.
- ↑ Jin-Young Park; Soo-In Park (2017). "Report on the bird leg bone from the Miocene Bukpyeong Formation, of Donghae City, Gangwon Province, South Korea". Journal of the Geological Society of Korea. 53 (2): 313–320. doi:10.14770/jgsk.2017.53.2.313.
- ↑ N. V. Zelenkov (2017). "Revision of non-passeriform birds from Polgárdi (Hungary, Upper Miocene): 3. Neoaves". Paleontological Journal. 51 (2): 203–213. doi:10.1134/S0031030117020162.
- ↑ Jamie R. Wood; R. Paul Scofield; Jill Hamel; Chris Lalas; Janet M. Wilmshurst (2017). "Bone stable isotopes indicate a high trophic position for New Zealand’s extinct South Island adzebill (Aptornis defossor) (Gruiformes: Aptornithidae)". New Zealand Journal of Ecology. 41 (2): 240–244. doi:10.20417/nzjecol.41.24.
- ↑ Thomas A. Stidham; Yuan-Qing Wang (2017). "An ameghinornithid-like bird (Aves: Cariamae: Ameghinornithidae?) from the Middle Eocene of Nei Mongol, China". Vertebrata PalAsiatica. 55 (3): 218–226.
- ↑ Federico J. Degrange (2017). "Hind limb morphometry of terror birds (Aves, Cariamiformes, Phorusrhacidae): functional implications for substrate preferences and locomotor lifestyle". Earth and Environmental Science Transactions of The Royal Society of Edinburgh. 106 (4): 257–276. doi:10.1017/S1755691016000256.
- ↑ Ursula B. Göhlich; Gerald Mayr (2017). "The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1333610.
- ↑ Thomas Stidham; Rajeev Patnaik; Kewal Krishan; Bahadur Singh; Abhik Ghosh; Ankita Singla; Simran S. Kotla (2017). "The first darter (Aves: Anhingidae) fossils from India (late Pliocene)". PLoS ONE. 12 (5): e0177129. doi:10.1371/journal.pone.0177129.
- ↑ Marco Pavia; Gregory B. P. Davies; Dominique Gommery; Lazarus Kgasi (2017). "Mid-Pliocene bald ibis (Geronticus cf. calvus; Aves: Threskiornithidae) from the Cradle of Humankind, Gauteng, South Africa and its environmental and evolutionary implications". PalZ. 91 (2): 237–243. doi:10.1007/s12542-017-0346-8.
- ↑ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield (2017). "A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world’s oldest penguins". The Science of Nature. 104 (3–4): Article 9. doi:10.1007/s00114-017-1441-0.
- ↑ Piotr Jadwiszczak; Thomas Mörs (2017). "An enigmatic fossil penguin from the Eocene of Antarctica". Polar Research. 36: 1291086.
- ↑ Piotr Jadwiszczak; Bruce M. Rothschild (2017). "The first evidence of an infectious disease in early penguins". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1353606.
- ↑ Theresa L. Cole; Jonathan M. Waters; Lara D. Shepherd; Nicolas J. Rawlence; Leo Joseph; Jamie R. Wood (2017). "Ancient DNA reveals that the ‘extinct’ Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx043.
- ↑ Carolina Acosta Hospitaleche; Marcelo Reguero; Sergio Santillana (2017). "Aprosdokitos mikrotero gen. et sp. nov., the tiniest Sphenisciformes that lived in Antarctica during the Paleogene". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 25–34. doi:10.1127/njgpa/2017/0624.
- ↑ Hanneke J.M. Meijer; Marco Pavia; Joan Madurell-Malapeira; David M. Alba (2017). "A revision of fossil eagle owls (Aves: Strigiformes:Bubo) from Europe and the description of a new species, Bubo ibericus, from Cal Guardiola (NE Iberian Peninsula)". Historical Biology: An International Journal of Paleobiology. 29 (6): 822–832. doi:10.1080/08912963.2016.1247836.
- ↑ Tomonori Tanaka; Yoshitsugu Kobayashi; Ken'ichi Kurihara; Anthony R. Fiorillo; Manabu Kano (2017). "The oldest Asian hesperornithiform from the Upper Cretaceous of Japan, and the phylogenetic reassessment of Hesperornithiformes". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1341960.
- 1 2 Nikita V. Zelenkov; Andrey V. Panteleyev; Vanesa L. De Pietri (2017). "Late Miocene rails (Aves: Rallidae) from southwestern Russia". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-017-0276-1.
- ↑ Min Wang; Jingmai K. O’Connor; Yanhong Pan; Zhonghe Zhou (2017). "A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle". Nature Communications. 8: Article number 14141. doi:10.1038/ncomms14141.
- ↑ Gerald Mayr; James L. Goedert (2017). "Oligocene and Miocene albatross fossils from Washington State (USA) and the evolutionary history of North Pacific Diomedeidae". The Auk. 134 (3): 659–671. doi:10.1642/AUK-17-32.1.
- 1 2 3 Elen Shute; Gavin J. Prideaux; Trevor H. Worthy (2017). "Taxonomic review of the late Cenozoic megapodes (Galliformes: Megapodiidae) of Australia". Royal Society Open Science. 4 (6): 170233. doi:10.1098/rsos.170233.
- ↑ Nicolas J. Rawlence; Charlotte E. Till; Luke J. Easton; Hamish G. Spencer; Rob Schuckard; David S. Melville; R. Paul Scofield; Alan J.D. Tennyson; Matt J. Rayner; Jonathan M. Waters (2017). "Speciation, range contraction and extinction in the endemic New Zealand King Shag complex". Molecular Phylogenetics and Evolution. in press. doi:10.1016/j.ympev.2017.07.011.
- ↑ Juan M. Diederle; Federico Agnolin (2017). "New anhingid (Aves, Suliformes) from the middle Miocene of Río Negro province, Patagonia, Argentina". Historical Biology: An International Journal of Paleobiology. Online edition: 1–9. doi:10.1080/08912963.2017.1284835.
- ↑ Jorge I. Noriega; Emilio A. Jordan; Raúl I. Vezzosi; Juan I. Areta (2017). "A new species of Opisthodactylus Ameghino, 1891 (Aves, Rheidae), from the late Miocene of northwestern Argentina, with implications for the paleobiogeography and phylogeny of rheas". Journal of Vertebrate Paleontology. 37 (1): e1278005. doi:10.1080/02724634.2017.1278005.
- ↑ Min Wang; Zhonghe Zhou (2017). "A morphological study of the first known piscivorous enantiornithine bird from the Early Cretaceous of China". Journal of Vertebrate Paleontology. 37 (2): e1278702. doi:10.1080/02724634.2017.1278702.
- ↑ J.C Rando; H. Pieper; Storrs L. Olson; F. Pereira; J.A. Alcover (2017). "A new extinct species of large bullfinch (Aves: Fringillidae: Pyrrhula) from Graciosa Island (Azores, North Atlantic Ocean)". Zootaxa. 4282 (3): 567–583. doi:10.11646/zootaxa.4282.3.9.
- ↑ Daniel T. Ksepka; Thomas A. Stidham; Thomas E. Williamson (2017). "Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 114 (30): 8047–8052. doi:10.1073/pnas.1700188114.
- ↑ Gerald Mayr (2017). "A small, "wader-like" bird from the Early Eocene of Messel (Germany)". Annales de Paléontologie. 103 (2): 141–147. doi:10.1016/j.annpal.2017.01.001.
- ↑ Fabricio Villalobos; Miguel Á. Olalla-Tárraga; Cleiber Marques Vieira; Nicholas Diniz Mazzei; Luis Mauricio Bini (2017). "Spatial dimension of body size evolution in Pterosauria: Bergmann’s rule does not drive Cope’s rule". Evolutionary Ecology Research. 18: 169–186.
- ↑ S.R. Beardmore; E. Lawlor; D.W.E. Hone (2017). "Using taphonomy to infer differences in soft tissues between taxa: an example using basal and derived forms of Solnhofen pterosaurs". The Science of Nature. 104 (7–8): Article 65. doi:10.1007/s00114-017-1486-0.
- ↑ Moussa Masrour; Carlos Pascual-Arribas; Marc de Ducla; Nieves Hernández-Medrano; Félix Pérez-Lorente (2017). "Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only)". Journal of African Earth Sciences. in press. doi:10.1016/j.jafrearsci.2017.07.004.
- ↑ Michael O’Sullivan; David M. Martill (2017). "The taxonomy and systematics of Parapsicephalus purdoni (Reptilia: Pterosauria) from the Lower Jurassic Whitby Mudstone Formation, Whitby, U.K". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1281919.
- ↑ Xin Cheng; Shunxing Jiang; Xiaolin Wang; Alexander W.A. Kellner (2017). "Premaxillary crest variation within the Wukongopteridae (Reptilia, Pterosauria) and comments on cranial structures in pterosaurs". Anais da Academia Brasileira de Ciências. 89 (1): 119–130. doi:10.1590/0001-3765201720160742.
- ↑ Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2017). "Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia". PeerJ. 5: e3256. doi:10.7717/peerj.3256.
- ↑ Felipe L. Pinheiro; Taissa Rodrigues (2017). "Anhanguera taxonomy revisited: is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control?". PeerJ. 5: e3285. doi:10.7717/peerj.3285.
- ↑ Elizabeth Martin-Silverstone; James R.N. Glasier; John H. Acorn; Sydney Mohr; Philip J. Currie (2017). "Reassesment of Dawndraco kanzai Kellner, 2010 and reassignment of the type specimen to Pteranodon sternbergi Harksen, 1966". Vertebrate Anatomy Morphology Palaeontology. 3: 47–59. doi:10.18435/B5059J.
- ↑ Gregory F. Funston; Elizabeth Martin-Silverstone; Philip J. Currie (2017). "The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion". FACETS. 2: 559–574. doi:10.1139/facets-2016-0067.
- ↑ Darren Naish; Mark P. Witton (2017). "Neck biomechanics indicate that giant Transylvanian azhdarchid pterosaurs were short-necked arch predators". PeerJ. 5: e2908. doi:10.7717/peerj.2908.
- ↑ Steven U. Vidovic; David M. Martill (2017). "The taxonomy and phylogeny of Diopecephalus kochi (Wagner, 1837) and ‘Germanodactylus rhamphastinus’ (Wagner, 1851)". In D. W. E. Hone; M. P. Witton; D. M. Martill. New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. doi:10.1144/SP455.12.
- ↑ Xiaoli Wang; Shunxing Jiang; Junqiang Zhang; Xin Cheng; Xuefeng Yu; Yameng Li; Guangjin Wei; Xiaolin Wang (2017). "New evidence from China for the nature of the pterosaur evolutionary transition". Scientific Reports. 7: Article number 42763. doi:10.1038/srep42763.
- ↑ Chang-Fu Zhou; Ke-Qin Gao; Hongyu Yi; Jinzhuang Xue; Quanguo Li; Richard C. Fox (2017). "Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea". Royal Society Open Science. 4 (2): 160672. doi:10.1098/rsos.160672.
- ↑ Stanislas Rigal; David M. Martill; Steven C. Sweetman (2017). "A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874)". In D. W. E. Hone; M. P. Witton; D. M. Martill. New Perspectives on Pterosaur Palaeobiology. The Geological Society of London. doi:10.1144/SP455.5.
- ↑ Michelle R. Stocker; Li-Jun Zhao; Sterling J. Nesbitt; Xiao-Chun Wu; Chun Li (2017). "A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria". Scientific Reports. 7: Article number 46028. doi:10.1038/srep46028.
- ↑ Emily J. Lessner; Michelle R. Stocker (2017). "Archosauriform endocranial morphology and osteological evidence for semiaquatic sensory adaptations in phytosaurs". Journal of Anatomy. in press. doi:10.1111/joa.12668.
- ↑ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2017). "Bone microstructure of Lewisuchus admixtus Romer, 1972 (Archosauria, Dinosauriformes)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1347646.
- ↑ Rodrigo T. Müller (2017). "Are the dinosauromorph femora from the Upper Triassic of Hayden Quarry (New Mexico) three stages in a growth series of a single taxon?". Anais da Academia Brasileira de Ciências. 89 (2): 835–839. doi:10.1590/0001-3765201720160583.
- ↑ Federico L. Agnolín; Sebastián Rozadilla (2017). "Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1352623.
- ↑ Sterling J. Nesbitt; Richard J. Butler; Martín D. Ezcurra; Paul M. Barrett; Michelle R. Stocker; Kenneth D. Angielczyk; Roger M. H. Smith; Christian A. Sidor; Grzegorz Niedźwiedzki; Andrey G. Sennikov; Alan J. Charig (2017). "The earliest bird-line archosaurs and the assembly of the dinosaur body plan". Nature. 544 (7651): 484–487. doi:10.1038/nature22037.
- ↑ Adam K. Huttenlocker; C.G. Farmer (2017). "Bone Microvasculature Tracks Red Blood Cell Size Diminution in Triassic Mammal and Dinosaur Forerunners". Current Biology. 27 (1): 48–54. doi:10.1016/j.cub.2016.10.012.
- ↑ Rivaldo R. Da Silva; Jorge Ferigolo; Piotr Bajdek; Graciela H. Piñeiro (2017). "The feeding habits of Mesosauridae". Frontiers in Earth Science. 5: Article 23. doi:10.3389/feart.2017.00023.
- ↑ Mark J. Macdougall; Diane Scott; Sean P. Modesto; Scott A. Williams; Robert R. Reisz (2017). "New material of the reptile Colobomycter pholeter (Parareptilia: Lanthanosuchoidea) and the diversity of reptiles during the Early Permian (Cisuralian)". Zoological Journal of the Linnean Society. 180 (3): 661–671. doi:10.1093/zoolinnean/zlw012.
- ↑ Aurore Canoville; Anusuya Chinsamy (2017). "Bone Microstructure of Pareiasaurs (Parareptilia) from the Karoo Basin, South Africa: Implications for Growth Strategies and Lifestyle Habits". The Anatomical Record. 300 (6): 1039–1066. PMID 27997077. doi:10.1002/ar.23534.
- ↑ Neil Brocklehurst (2017). "Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores". PeerJ. 5: e3200. doi:10.7717/peerj.3200.
- ↑ Jason P. Jung; Stuart S. Sumida (2017). "A juvenile of the multiple-tooth-rowed reptile Labidosaurikos (Eureptilia, Captorhinidae, Moradisaurinae) from the Lower Permian of north-central Texas". PaleoBios. 34: 1–5.
- ↑ Torsten M. Scheyer; James M. Neenan; Timea Bodogan; Heinz Furrer; Christian Obrist; Mathieu Plamondon (2017). "A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny". Scientific Reports. 7: Article number 4406. doi:10.1038/s41598-017-04514-x.
- ↑ Hans-Dieter Sues (2017). "Arctosaurus osborni, a Late Triassic archosauromorph reptile from the Canadian Arctic Archipelago". Canadian Journal of Earth Sciences. 54 (2): 129–133. doi:10.1139/cjes-2016-0159.
- ↑ Jun Liu; Chris L. Organ; Michael J. Benton; Matthew C. Brandley; Jonathan C. Aitchison (2017). "Live birth in an archosauromorph reptile". Nature Communications. 8: Article number 14445. doi:10.1038/ncomms14445.
- ↑ Chun Li; Olivier Rieppel; Nicholas C. Fraser (2017). "Viviparity in a Triassic marine archosauromorph reptile". Vertebrata PalAsiatica. 55 (3): 210–217.
- ↑ Vivien P. Jaquier; Torsten M. Scheyer (2017). "Bone histology of the Middle Triassic long-necked reptiles Tanystropheus and Macrocnemus (Archosauromorpha, Protorosauria)". Journal of Vertebrate Paleontology. 37 (2): e1296456. doi:10.1080/02724634.2017.1296456.
- ↑ Eudald Mujal; Josep Fortuny; Arnau Bolet; Oriol Oms; José Ángel López (2017). "An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula)". PLoS ONE. 12 (4): e0174693. doi:10.1371/journal.pone.0174693.
- ↑ Chun Li; Nicholas C. Fraser; Olivier Rieppel; Li-Jun Zhao; Li-Ting Wang (2017). "A new diapsid from the Middle Triassic of southern China". Journal of Paleontology. in press. doi:10.1017/jpa.2017.12.
- ↑ Neil Brocklehurst; Jörg Fröbisch (2017). "A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications". Fossil Record. 20 (1): 87–93. doi:10.5194/fr-20-87-2017.
- ↑ Marco Romano; Ausonio Ronchi; Simone Maganuco; Umberto Nicosia (2017). "New material of Alierasaurus ronchii (Synapsida, Caseidae) from the Permian of Sardinia (Italy), and its phylogenetic affinities". Palaeontologia Electronica. 20 (2): Article number 20.2.26A.
- ↑ Christen D. Shelton; Paul Martin Sander (2017). "Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage". Comptes Rendus Palevol. 16 (4): 397–424. doi:10.1016/j.crpv.2017.02.002.
- ↑ Neil Brocklehurst; Kirstin S. Brink (2017). "Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous". FACETS. 2: 68–84. doi:10.1139/facets-2016-0046.
- ↑ Kévin Rey; Romain Amiot; François Fourel; Fernando Abdala; Frédéric Fluteau; Nour-Eddine Jalil; Jun Liu; Bruce S. Rubidge; Roger M.H. Smith; J. Sébastien Steyer; Pia A. Viglietti; Xu Wang; Christophe Lécuyer (2017). "Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades". eLife. 6: e28589. doi:10.7554/eLife.28589.
- ↑ Julien Benoit; Paul R. Manger; Vincent Fernandez; Bruce S. Rubidge (2017). "The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida". Palaeontologia Africana. 52: 58–77.
- ↑ Ashley Kruger; Bruce S. Rubidge; Fernando Abdala (2017). "A juvenile specimen of Anteosaurus magnificus Watson, 1921 (Therapsida: Dinocephalia) from the South African Karoo, and its implications for understanding dinocephalian ontogeny". Journal of Systematic Palaeontology. in press: 1–20. doi:10.1080/14772019.2016.1276106.
- ↑ Julien Benoit; Paul R. Manger; Luke Norton; Vincent Fernandez; Bruce S. Rubidge (2017). "Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia)". PeerJ. 5: e3496. doi:10.7717/peerj.3496.
- ↑ Chloe Olivier; Alexandra Houssaye; Nour-Eddine Jalil; Jorge Cubo (2017). "First palaeohistological inference of resting metabolic rate in an extinct synapsid, Moghreberia nmachouensis (Therapsida: Anomodontia)". Biological Journal of the Linnean Society. 121 (2): 409–419. doi:10.1093/biolinnean/blw044.
- ↑ Michael Laaß; Burkhard Schillinger; Anders Kaestner (2017). "What did the “Unossified zone” of the non-mammalian therapsid braincase house?". Journal of Morphology. 278 (8): 1020–1032. doi:10.1002/jmor.20583.
- ↑ Michael Laaß; Anders Kaestner (2017). "Evidence for convergent evolution of a neocortex-like structure in a late Permian therapsid". Journal of Morphology. 278 (8): 1033–1057. doi:10.1002/jmor.20712.
- ↑ Ricardo Araújo; Vincent Fernandez; Michael J. Polcyn; Jörg Fröbisch; Rui M.S. Martins (2017). "Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy". PeerJ. 5: e3119. doi:10.7717/peerj.3119.
- ↑ Julien Benoit; Luke A. Norton; Paul R. Manger; Bruce S. Rubidge (2017). "Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques". PLoS ONE. 12 (2): e0172047. doi:10.1371/journal.pone.0172047.
- ↑ Michael W. Maisch (2017). "Re-assessment of Silphoictidoides ruhuhuensis von Huene, 1950 (Therapsida, Therocephalia) from the Late Permian of Tanzania: one of the most basal baurioids known". Palaeodiversity. 10 (1): 25–39. doi:10.18476/pale.v10.a3.
- ↑ Julien Benoit; Sandra C. Jasinoski; Vincent Fernandez; Fernando Abdala (2017). "The mystery of a missing bone: revealing the orbitosphenoid in basal Epicynodontia (Cynodontia, Therapsida) through computed tomography". The Science of Nature. 104 (7–8): Article 66. doi:10.1007/s00114-017-1487-z.
- ↑ A. W. Crompton; T. Owerkowicz; B.-A. S. Bhullar; C. Musinsky (2017). "Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy". Journal of Vertebrate Paleontology. 37 (1): e1269116. doi:10.1080/02724634.2017.1269116.
- ↑ Sandra C. Jasinoski; Fernando Abdala (2017). "Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus". PeerJ. 5: e2875. doi:10.7717/peerj.2875.
- ↑ Sandra C. Jasinoski; Fernando Abdala (2017). "Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps". The Anatomical Record. 300 (2): 353–381. doi:10.1002/ar.23473.
- ↑ Leandro C. Gaetano; Fernando Abdala; Romala Govender (2017). "The postcranial skeleton of the Lower Jurassic Tritylodon longaevus from southern Africa". Ameghiniana. 54 (1): 1–35. doi:10.5710/AMGH.11.09.2016.3011.
- ↑ E.M. Bordy; L. Sciscio; F. Abdala; B.W. McPhee; J.N. Choiniere (2017). "First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa)". Palaeogeography, Palaeoclimatology, Palaeoecology. 468: 362–372. doi:10.1016/j.palaeo.2016.12.024.
- ↑ Agustín G. Martinelli; Estevan Eltink; Átila A. S. Da-Rosa; Max C. Langer (2017). "A new cynodont from the Santa Maria formation, south Brazil, improves Late Triassic probainognathian diversity". Papers in Palaeontology. 3 (3): 401–423. doi:10.1002/spp2.1081.
- ↑ Agustín G. Martinelli; Christian F. Kammerer; Tomaz P. Melo; Voltaire D. Paes Neto; Ana Maria Ribeiro; Átila A. S. Da-Rosa; Cesar L. Schultz; Marina Bento Soares (2017). "The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance". PLoS ONE. 12 (6): e0177948. doi:10.1371/journal.pone.0177948.
- ↑ Christian F. Kammerer; Roger M.H. Smith (2017). "An early geikiid dicynodont from the Tropidostoma Assemblage Zone (late Permian) of South Africa". PeerJ. 5: e2913. doi:10.7717/peerj.2913.
- ↑ Jun Liu; Fernando Abdala (2017). "Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China". Vertebrata PalAsiatica. 55 (1): 24–40.
- 1 2 Paúl M. Velazco; Alexandra J. Buczek; Michael J. Novacek (2017). "Two new tritylodontids (Synapsida, Cynodontia, Mammaliamorpha) from the Upper Jurassic, southwestern Mongolia". American Museum Novitates. 3874: 1–35. doi:10.1206/3874.1.
- ↑ A. A. Kurkin (2017). "A new Galeopid (Anomodontia, Galeopidae) from the Permian of Eastern Europe". Paleontological Journal. 51 (3): 308–312. doi:10.1134/S0031030117030042.
- ↑ Tomaz P. Melo; Agustín G. Martinelli; Marina B. Soares (2017). "A new gomphodont cynodont (Traversodontidae) from the Middle–Late Triassic Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence, Brazil". Palaeontology. 60 (4): 571–582. doi:10.1111/pala.12302.
- ↑ M. Zhu; A. Yu. Zhuravlev; R.A. Wood; F. Zhao; S.S. Sukhov (2017). "A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform". Geology. 45 (5): 459–462. doi:10.1130/G38865.1.
- ↑ John R. Paterson; James G. Gehling; Mary L. Droser; Russell D. C. Bicknell (2017). "Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia". Scientific Reports. 7: Article number 45539. doi:10.1038/srep45539.
- ↑ Simon A. F. Darroch; Imran A. Rahman; Brandt Gibson; Rachel A. Racicot; Marc Laflamme (2017). "Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina". Biology Letters. 13 (5): 20170033. doi:10.1098/rsbl.2017.0033.
- ↑ Scott D. Evans; Mary L. Droser; James G. Gehling (2017). "Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata". PLoS ONE. 12 (5): e0176874. doi:10.1371/journal.pone.0176874.
- ↑ Bruce S. Lieberman; Richard Kurkewicz; Heather Shinogle; Julien Kimmig; Breandán Anraoi MacGabhann (2017). "Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA". PeerJ. 5: e3312. doi:10.7717/peerj.3312.
- ↑ Bruno Becker-Kerber; Mírian Liza Alves Forancelli Pacheco; Isaac Daniel Rudnitzki; Douglas Galante; Fabio Rodrigues; Juliana de Moraes Leme (2017). "Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization". Scientific Reports. 7: Article number 5482. doi:10.1038/s41598-017-05753-8.
- ↑ Joseph P. Botting; Lucy A. Muir; Yuandong Zhang; Xuan Ma; Junye Ma; Longwu Wang; Jianfang Zhang; Yanyan Song; Xiang Fang (2017). "Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass Extinction". Current Biology. 27 (4): 556–562. doi:10.1016/j.cub.2016.12.061.
- ↑ Arnaud Brayard; L. J. Krumenacker; Joseph P. Botting; James F. Jenks; Kevin G. Bylund; Emmanuel Fara; Emmanuelle Vennin; Nicolas Olivier; Nicolas Goudemand; Thomas Saucède; Sylvain Charbonnier; Carlo Romano; Larisa Doguzhaeva; Ben Thuy; Michael Hautmann; Daniel A. Stephen; Christophe Thomazo; Gilles Escarguel (2017). "Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna". Science Advances. 3 (2): e1602159. doi:10.1126/sciadv.1602159.
- ↑ Fletcher J. Young; Jakob Vinther (2017). "Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni". Palaeontology. 60 (1): 27–54. doi:10.1111/pala.12269.
- 1 2 Han Zeng; Fangchen Zhao; Zongjun Yin; Maoyan Zhu (2017). "Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China". Journal of Systematic Palaeontology. Online edition: 1. doi:10.1080/14772019.2016.1263685.
- ↑ Joseph Moysiuk; Martin R. Smith; Jean-Bernard Caron (2017). "Hyoliths are Palaeozoic lophophorates". Nature. 541 (7637): 394–397. doi:10.1038/nature20804.
- ↑ Lauren Sallan; Sam Giles; Robert S. Sansom; John T. Clarke; Zerina Johanson; Ivan J. Sansom; Philippe Janvier (2017). "The ‘Tully Monster’ is not a vertebrate: characters, convergence and taphonomy in Palaeozoic problematic animals". Palaeontology. 60 (2): 149–157. doi:10.1111/pala.12282.
- ↑ Leanne Chambers; Danita Brandt (2017). "Explaining gregarious behaviour in Banffia constricta from the Middle Cambrian Burgess Shale, British Columbia". Lethaia. in press. doi:10.1111/let.12231.
- 1 2 Ya-Sheng Wu (2017). "A latest Permian non-reef calcisponge fauna from Laibin, Guangxi, southern China and its significance". Journal of Palaeogeography. 6 (1): 60–68. doi:10.1016/j.jop.2016.10.002.
- 1 2 3 Michael J. Melchin; Alfred C. Lenz; Anna Kozłowska (2017). "Retiolitine graptolites from the Aeronian and lower Telychian (Llandovery, Silurian) of Arctic Canada". Journal of Paleontology. 91 (1): 116–145. doi:10.1017/jpa.2016.107.
- ↑ Hao Yun; Xingliang Zhang; Luoyang Li (2017). "Chancelloriid Allonnia erjiensis sp. nov. from the Chengjiang Lagerstätte of South China". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1311380.
- ↑ Olle Hints; Petra Tonarová; Mats E. Eriksson; Claudia V. Rubinstein; G. Susana de la Puente (2017). "Early Middle Ordovician scolecodonts from north-western Argentina and the emergence of labidognath polychaete jaw apparatuses". Palaeontology. 60 (4): 583–593. doi:10.1111/pala.12303.
- ↑ Xinglian Yang; Yuanlong Zhao; Loren E. Babcock; Jin Peng (2017). "A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China". Geological Magazine. in press: 1–10. doi:10.1017/S0016756816001229.
- ↑ X.-L. Yang; Y.-L. Zhao; L. E. Babcock; J. Peng (2017). "Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota (Cambrian Stage 5), Guizhou, South China". Scientific Reports. 7: Article number 42945. doi:10.1038/srep42945.
- ↑ Martin Valent; Oldřich Fatka; Ladislav Marek (2017). "Biskolites iactans gen. et sp. nov. from the Cambrian of the Czech Republic (Hyolitha, Skryje-Týřovice Basin)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 227–233. doi:10.1127/njgpa/2017/0679.
- ↑ Derek E.G. Briggs; Jean-Bernard Caron (2017). "A large Cambrian chaetognath with supernumerary grasping spines". Current Biology. in press. doi:10.1016/j.cub.2017.07.003.
- 1 2 Stephen Pates; Allison C. Daley (2017). "Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada". Papers in Palaeontology. 3 (3): 461–470. doi:10.1002/spp2.1084.
- 1 2 3 Yaoping Cai; Iván Cortijo; James D. Schiffbauer; Hong Hua (2017). "Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China". Precambrian Research. 298: 146–156. doi:10.1016/j.precamres.2017.05.016.
- ↑ José Antonio Gámez Vintaned; Eladio Liñán; David Navarro; Andrey Yu. Zhuravlev (2017). "The oldest Cambrian skeletal fossils of Spain (Cadenas Ibéricas, Aragón)". Geological Magazine. in press. doi:10.1017/S0016756817000358.
- ↑ Joseph P. Botting; Yuandong Zhang; Lucy A. Muir (2017). "Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution". Scientific Reports. 7: Article number 5286. doi:10.1038/s41598-017-05604-6.
- 1 2 3 Ewa Świerczewska-Gładysz (2017). "Early Campanian Corallistidae (lithistid Demospongiae) from the Miechów and Mogilno-Łódź synclinoria, southern and central Poland". Cretaceous Research. 71: 40–62. doi:10.1016/j.cretres.2016.11.007.
- ↑ George O. Poinar (2017). "A mermithid nematode, Cretacimermis aphidophilus sp. n. (Nematoda: Mermithidae), parasitising an aphid (Hemiptera: Burmitaphididae) in Myanmar amber: a 100 million year association". Nematology. 19 (5): 509–513. doi:10.1163/15685411-00003063.
- ↑ Thomas H. P. Harvey; Nicholas J. Butterfield (2017). "Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos". Nature Ecology & Evolution. 1: Article number 0022. doi:10.1038/s41559-016-0022.
- ↑ Jian Han; Yaoping Cai; James D. Schiffbauer; Hong Hua; Xing Wang; Xiaoguang Yang; Kentaro Uesugi; Tsuyoshi Komiya; Jie Sun (2017). "A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China". Geological Magazine. in press: 1–12. doi:10.1017/S0016756816001187.
- 1 2 Daniel Ungureanu; Fayez Ahmad; Sherif Farouk (2017). "A Callovian (Middle Jurassic) poriferan fauna from northwestern Jordan: taxonomy, palaeoecology and palaeobiogeography". Historical Biology: An International Journal of Paleobiology. Online edition. doi:10.1080/08912963.2017.1304935.
- 1 2 3 4 Rossana Sanfilippo; Antonietta Rosso; Agatino Reitano; Gianni Insacco (2017). "First record of sabellid and serpulid polychaetes from the Permian of Sicily". Acta Palaeontologica Polonica. 62 (1): 25–38. doi:10.4202/app.00288.2016.
- ↑ Juwan Jeon; Jino Park; Suk-Joo Choh; Dong-Jin Lee (2017). "Early labechiid stromatoporoids of the Yeongheung Formation (Middle Ordovician), Yeongwol Group, mideastern Korean Peninsula: Part II. Systematic paleontology and paleogeographic implications". Geosciences Journal. 21 (3): 331–340. doi:10.1007/s12303-016-0055-4.
- ↑ Benjamin Gügel; Kenneth De Baets; Iwan Jerjen; Philipp Schuetz; Christian Klug (2017). "A new subdisarticulated machaeridian from the Middle Devonian of China: Insights into taphonomy and taxonomy using X-ray microtomography and 3D-analysis". Acta Palaeontologica Polonica. 62 (2): 237–247. doi:10.4202/app.00346.2017.
- ↑ Haijing Sun; Loren E. Babcock; Jin Peng; Jessica M. Kastigar (2017). "Systematics and palaeobiology of some Cambrian hyoliths from Guizhou, China, and Nevada, USA". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 79–100. doi:10.1080/03115518.2016.1184426.
- 1 2 Thomas Wotte; Frederick A. Sundberg (2017). "Small shelly fossils from the Montezuman–Delamaran of the Great Basin in Nevada and California". Journal of Paleontology. in press. doi:10.1017/jpa.2017.8.
- ↑ Jean-Bernard Caron; Cédric Aria (2017). "Cambrian suspension-feeding lobopodians and the early radiation of panarthropods". BMC Evolutionary Biology. 17: 29. doi:10.1186/s12862-016-0858-y.
- ↑ Y. Candela; W. R. B. Crighton (2017). "Addenda to the record of machaeridian shell plates in the Wether Law Linn Formation (Late Llandovery), Pentland Hills, Scotland". Scottish Journal of Geology. 53 (1): 35–39. doi:10.1144/sjg2016-006.
- 1 2 Tomáš Kočí; Manfred Jäger; Nicolas Morel (2017). "Sabellid and serpulid worm tubes (Polychaeta, Canalipalpata, Sabellida) from the historical stratotype of the Cenomanian (Late Cretaceous; Le Mans region, Sarthe, France)". Annales de Paléontologie. 103 (1): 45–80. doi:10.1016/j.annpal.2016.11.004.
- ↑ Jian Han; Simon Conway Morris; Qiang Ou; Degan Shu; Hai Huang (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. doi:10.1038/nature21072.
- 1 2 John S. Peel (2017). "First records from Laurentia of some middle Cambrian (Series 3) sponge spicules". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2017.1282983.
- ↑ John S. Peel (2017). "Feeding behaviour of a new worm (Priapulida) from the Sirius Passet Lagerstätte (Cambrian Series 2, Stage 3) of North Greenland (Laurentia)". Palaeontology. Online edition. doi:10.1111/pala.12316.
- ↑ Julien Kimmig; Luke C. Strotz; Bruce S. Lieberman (2017). "The stalked filter feeder Siphusauctum lloydguntheri n. sp. from the middle Cambrian (Series 3, Stage 5) Spence Shale of Utah: its biological affinities and taphonomy". Journal of Paleontology. in press. doi:10.1017/jpa.2017.57.
- ↑ http://zoobank.org/References/D0590390-A85A-493A-8529-B2DF64D91169
- ↑ Artem Kouchinsky; Stefan Bengtson; Ed Landing; Michael Steiner; Michael Vendrasco; Karen Ziegler (2017). "Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia". Acta Palaeontologica Polonica. 62 (2): 311–440. doi:10.4202/app.00289.2016.
- ↑ Mats E. Eriksson; Luke A. Parry; David M. Rudkin (2017). "Earth’s oldest ‘Bobbit worm’ – gigantism in a Devonian eunicidan polychaete". Scientific Reports. 7: Article number 43061. doi:10.1038/srep43061.
- ↑ T. Hassenkam; M. P. Andersson; K. N. Dalby; D. M. A. Mackenzie; M. T. Rosing (2017). "Elements of Eoarchean life trapped in mineral inclusions". Nature. 548 (7665): 78–81. doi:10.1038/nature23261.
- ↑ Matthew S. Dodd; Dominic Papineau; Tor Grenne; John F. Slack; Martin Rittner; Franco Pirajno; Jonathan O’Neil; Crispin T. S. Little (2017). "Evidence for early life in Earth’s oldest hydrothermal vent precipitates". Nature. 543 (7643): 60–64. doi:10.1038/nature21377.
- ↑ Tara Djokic; Martin J. Van Kranendonk; Kathleen A. Campbell; Malcolm R. Walter; Colin R. Ward (2017). "Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits". Nature Communications. 8: Article number 15263. doi:10.1038/ncomms15263.
- ↑ Dorothy Z. Oehler; Maud M. Walsh; Kenichiro Sugitani; Ming-Chang Liu; Christopher H. House (2017). "Large and robust lenticular microorganisms on the young Earth". Precambrian Research. 296: 112–119. doi:10.1016/j.precamres.2017.04.031.
- ↑ Zachary R. Adam; Mark L. Skidmore; David W. Mogk; Nicholas J. Butterfield (2017). "A Laurentian record of the earliest fossil eukaryotes". Geology. 45 (5): 387–390. doi:10.1130/G38749.1.
- ↑ Stefan Bengtson; Birger Rasmussen; Magnus Ivarsson; Janet Muhling; Curt Broman; Federica Marone; Marco Stampanoni; Andrey Bekker (2017). "Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt". Nature Ecology & Evolution. 1: Article number 0141. doi:10.1038/s41559-017-0141.
- ↑ Jennifer F. Hoyal Cuthill; Simon Conway Morris (2017). "Nutrient-dependent growth underpinned the Ediacaran transition to large body size". Nature Ecology & Evolution. 1: 1201–1204. doi:10.1038/s41559-017-0222-7.
- ↑ Alana C. Sharp; Alistair R. Evans; Siobhan A. Wilson; Patricia Vickers-Rich (2017). "First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life". Precambrian Research. in press. doi:10.1016/j.precamres.2017.07.023.
- ↑ Chenyang Cai; Richard A. B. Leschen; David S. Hibbett; Fangyuan Xia; Diying Huang (2017). "Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous". Nature Communications. 8: Article number 14894. doi:10.1038/ncomms14894.
- 1 2 Grzegorz Worobiec; Frank Harald Neumann; Elżbieta Worobiec; Verena Nitz; Christoph Hartkopf-Fröder (2017). "New fungal cephalothecoid-like fructifications from central European Neogene deposits". Fungal Biology. 121 (3): 285–292. doi:10.1016/j.funbio.2016.12.005.
- ↑ Marcelo G. Carrera; Ricardo A. Astini; Fernando J. Gomez (2017). "A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium". Journal of Paleontology. 91 (1): 73–85. doi:10.1017/jpa.2016.145.
- ↑ Emmanuelle J. Javaux; Andrew H. Knoll (2017). "Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution". Journal of Paleontology. 91 (2): 199–229. doi:10.1017/jpa.2016.124.
- 1 2 Phoebe A. Cohen; Spencer W. Irvine; Justin V. Strauss (2017). "Vase-shaped microfossils from the Tonian Callison Lake Formation of Yukon, Canada: taxonomy, taphonomy and stratigraphic palaeobiology". Palaeontology. 60 (5): 683–701. doi:10.1111/pala.12315.
- 1 2 Cleber F. Alves; Francisco Henrique de Oliveira Lima; Seirin Shimabukuro (2017). "New Aptian calcareous nannofossil species from Brazil". Journal of Nannoplankton Research. 37 (1): 15–24.
- ↑ Wei Du; Xun Lian Wang; Tsuyoshi Komiya; Ran Zhao; Yue Wang (2017). "Dendroid multicellular thallophytes preserved in a Neoproterozoic black phosphorite in southern China". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 1–11. doi:10.1080/03115518.2016.1159408.
- ↑ Bing Shen; Shuhai Xiao; Chuanming Zhou; Lin Dong; Jieqiong Chang; Zhe Chen (2017). "A new modular palaeopascichnid fossil Curviacus ediacaranus new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China". Geological Magazine. in press. doi:10.1017/S001675681700036X.
- 1 2 3 Stefan Bengtson; Therese Sallstedt; Veneta Belivanova; Martin Whitehouse (2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLoS Biology. 15 (3): e2000735. PMID 28291791. doi:10.1371/journal.pbio.2000735.
- ↑ E. Cruz-Abad; L. Consorti; M. Di Lucia; M. Parente; E. Caus (2017). "Fissumella motolae n. gen. n. sp., a new soritoidean (Foraminifera) from the lowermost Albian carbonate platform facies of central and southern Italy". Cretaceous Research. 78: 1–7. doi:10.1016/j.cretres.2017.05.024.
- ↑ Heda Agić; Małgorzata Moczydłowska; Leiming Yin (2017). "Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton - a window into the early eukaryote evolution". Precambrian Research. 297: 101–130. doi:10.1016/j.precamres.2017.04.042.
- ↑ Sam W. Heads; Andrew N. Miller; J. Leland Crane; M. Jared Thomas; Danielle M. Ruffatto; Andrew S. Methven; Daniel B. Raudabaugh; Yinan Wang (2017). "The oldest fossil mushroom". PLoS ONE. 12 (6): e0178327. doi:10.1371/journal.pone.0178327.
- ↑ Michael Krings; Hans Kerp; Edith L. Taylor; Carla J. Harper (2017). "Hagenococcus aggregatus nov. gen. et sp., a microscopic, colony-forming alga from the 410-million-yr-old Rhynie chert". Nova Hedwigia. 105 (1–2): 205–217. doi:10.1127/nova_hedwigia/2017/0406.
- 1 2 3 Luana Morais; Thomas Rich Fairchild; Daniel J.G. Lahr; Isaac D. Rudnitzki; J. William Schopf; Amanda K. Garcia; Anatoliy B. Kudryavtsev; Guilherme R. Romero (2017). "Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization". Journal of Paleontology. 91 (3): 393–406. doi:10.1017/jpa.2017.16.
- ↑ Paula Dentzien-Dias; George Poinar (Jr.); Heitor Francischini (2017). "A new actinomycete from a Guadalupian vertebrate coprolite from Brazil". Historical Biology: An International Journal of Paleobiology. 29 (6): 770–776. doi:10.1080/08912963.2016.1241247.
- ↑ George Poinar, Jr. (2017). "Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms". Journal of Medical Entomology. 54 (4): 895–900. doi:10.1093/jme/tjw247.
- ↑ Daniel Ţabără; Hamid Slimani; Silvia Mare; Carmen Mariana Chira (2017). "Integrated biostratigraphy and palaeoenvironmental interpretation of the Upper Cretaceous to Paleocene succession in the northern Moldavidian Domain (Eastern Carpathians, Romania)". Cretaceous Research. 77: 102–123. doi:10.1016/j.cretres.2017.04.021.
- ↑ Rui O. B. P. da Gama (2017). "Spearlithus, a new Pleistocene calcareous nannofossil genus from shallow marine settings of the Dominican Republic". Micropaleontology. 62 (4): 273–291.
- ↑ George Poinar Jr. (2017). "Two new genera, Mycophoris gen. nov., (Orchidaceae) and Synaptomitus gen. nov. (Basidiomycota) based on a fossil seed with developing embryo and associated fungus in Dominican amber". Botany. 95 (1): 1–8. doi:10.1139/cjb-2016-0118.
- ↑ Lei-Ming Yin; B.P. Singh; O.N. Bhargava; Yuan-Long Zhao; R.S. Negi; Fan-Wei Meng; C.A. Sharma (2017). "Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya". Palaeoworld. in press. doi:10.1016/j.palwor.2017.05.004.
- ↑ Felix Schlagintweit; Koorosh Rashidi; Farzaneh Barani (2017). "Tarburina zagrosiana n. gen., n. sp., a new larger benthic porcelaneous foraminifer from the late Maastrichtian of Iran". Journal of Micropalaeontology. in press. doi:10.1144/jmpaleo2016-019.
- ↑ Michael Krings; Carla J. Harper (2017). "A mantled fungal reproductive unit from the Lower Devonian Windyfield chert, Scotland, with prominent spines and otherwise shaped projections extending out from the mantle". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 285 (2): 201–211. doi:10.1127/njgpa/2017/0677.
- ↑ Min Shi; Qing-Lai Feng; Maliha Zareen Khan; Stanley Awramik; Shi-Xing Zhu (2017). "Silicified microbiota from the Paleoproterozoic Dahongyu Formation, Tianjin, China". Journal of Paleontology. 91 (3): 369–392. doi:10.1017/jpa.2016.163.
- ↑ Anatoly D. Erlykin; David A. T. Harper; Terry Sloan; Arnold W. Wolfendale (2017). "Mass extinctions over the last 500 myr: an astronomical cause?". Palaeontology. 60 (2): 159–167. doi:10.1111/pala.12283.
- ↑ S. D. Burgess; J. D. Muirhead; S. A. Bowring (2017). "Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction". Nature Communications. 8: Article number 164. doi:10.1038/s41467-017-00083-9.
- ↑ J.H.F.L. Davies; A. Marzoli; H. Bertrand; N. Youbi; M. Ernesto; U. Schaltegger (2017). "End-Triassic mass extinction started by intrusive CAMP activity". Nature Communications. 8: Article number 15596. doi:10.1038/ncomms15596.
- ↑ Lawrence M. E. Percival; Micha Ruhl; Stephen P. Hesselbo; Hugh C. Jenkyns; Tamsin A. Mather; Jessica H. Whiteside (2017). "Mercury evidence for pulsed volcanism during the end-Triassic mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 114 (30): 7929–7934. doi:10.1073/pnas.1705378114.
- ↑ Nicholas J. Minter; Luis A. Buatois; M. Gabriela Mángano; Neil S. Davies; Martin R. Gibling; Robert B. MacNaughton; Conrad C. Labandeira (2017). "Early bursts of diversification defined the faunal colonization of land". Nature Ecology & Evolution. 1: Article number 0175. doi:10.1038/s41559-017-0175.
- ↑ Stephanie E. Suarez; Michael E. Brookfield; Elizabeth J. Catlos; Daniel F. Stöckli (2017). "A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal". PLoS ONE. 12 (6): e0179262. doi:10.1371/journal.pone.0179262.
- ↑ Neil Brocklehurst; Michael O. Day; Bruce S. Rubidge; Jörg Fröbisch (2017). "Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian". Proceedings of the Royal Society B: Biological Sciences. 284 (1852): 20170231. doi:10.1098/rspb.2017.0231.
- ↑ Roger A. Close; Roger B.J. Benson; Paul Upchurch; Richard J. Butler (2017). "Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification". Nature Communications. 8: Article number 15381. doi:10.1038/ncomms15381.
- ↑ Jeremy E. Martin; Peggy Vincent; Théo Tacail; Fatima Khaldoune; Essaid Jourani; Nathalie Bardet; Vincent Balter (2017). "Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction". Current Biology. 27 (11): 1641–1644.e2. doi:10.1016/j.cub.2017.04.043.
- ↑ Martin Qvarnström; Grzegorz Niedźwiedzki; Paul Tafforeau; Živil Žigaitė; Per E. Ahlberg (2017). "Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data". Scientific Reports. 7: Article number 2723. doi:10.1038/s41598-017-02893-9.
- ↑ Piotr Bajdek; Krzysztof Owocki; Andrey G. Sennikov; Valeriy K. Golubev; Grzegorz Niedźwiedzki (2017). "Residues from the Upper Permian carnivore coprolites from Vyazniki in Russia - key questions in reconstruction of feeding habits". Palaeogeography, Palaeoclimatology, Palaeoecology. 482: 70–82. doi:10.1016/j.palaeo.2017.05.033.
- ↑ Michael Frese; Gerda Gloy; Rolf G. Oberprieler; Damian B. Gore (2017). "Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping". PLoS ONE. 12 (6): e0179029. doi:10.1371/journal.pone.0179029.
- ↑ Adiël A. Klompmaker; Michał Kowalewski; John Warren Huntley; Seth Finnegan (2017). "Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems". Science. 356 (6343): 1178–1180. doi:10.1126/science.aam7468.
- ↑ Catalina Pimiento; John N. Griffin; Christopher F. Clements; Daniele Silvestro; Sara Varela; Mark D. Uhen; Carlos Jaramillo (2017). "The Pliocene marine megafauna extinction and its impact on functional diversity". Nature Ecology & Evolution. 1: 1100–1106. doi:10.1038/s41559-017-0223-6.