20,000
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | twenty thousand | |||
Ordinal |
20000th (twenty thousandth) | |||
Factorization | 25× 54 | |||
Roman numeral | XX | |||
Binary | 1001110001000002 | |||
Ternary | 10001022023 | |||
Quaternary | 103202004 | |||
Quinary | 11200005 | |||
Senary | 2323326 | |||
Octal | 470408 | |||
Duodecimal | B6A812 | |||
Hexadecimal | 4E2016 | |||
Vigesimal | 2A0020 | |||
Base 36 | FFK36 |
20,000 (twenty thousand) is the natural number that comes after 19,999 and before 20,001.
Selected numbers in the range 20000–29999
- 20000 – round number; also in the title of Jules Verne's novel Twenty Thousand Leagues Under the Sea
- 20081 – Motorola 68K instruction for no operation (NOP)
- 20100 – sum of the first 200 natural numbers (hence a triangular number)
- 20160 – highly composite number;[1] the smallest order belonging to two non-isomorphic simple groups: the alternating group A8 and the Chevalley group A2(4)
- 20161 – the largest integer that cannot be expressed as a sum of two abundant numbers
- 20230 – pentagonal pyramidal number[2]
- 20412 – Leyland number:[3] 93 + 39
- 20540 – square pyramidal number[4]
- 20569 – tetranacci number[5]
- 20736 – 124, 1000012, palindromic in base 15 (622615)
- 20903 – first prime of form 120k + 23 that is not a full reptend prime
- 21025 – 1452, palindromic in base 12 (1020112)
- 21147 – Bell number[6]
- 21181 – the least of five remaining Seventeen or Bust numbers in the Sierpiński problem
- 21856 – octahedral number[7]
- 21952 – 283
- 21978 – reverses when multiplied by 4: 4 × 21978 = 87912
- 22050 – pentagonal pyramidal number[2]
- 22140 – square pyramidal number[4]
- 22222 – Kaprekar number:[8] 222222 = 493817284, 4938 + 17284 = 22222
- 22447 – cuban prime[9]
- 22527 – Woodall number: 11 × 211 − 1[10]
- 22699 – one of five remaining Seventeen or Bust numbers in the Sierpiński problem
- 23401 – Leyland number:[3] 65 + 56
- 23409 – sum of the cubes of the first 17 positive integers
- 23497 – cuban prime[9]
- 23821 – square pyramidal number[4]
- 23969 – octahedral number[7]
- 23976 – pentagonal pyramidal number[2]
- 24211 – Zeisel number[11]
- 24336 – 1562, palindromic in base 5: 12343215
- 24389 – 293
- 24571 – cuban prime[9]
- 24601 – Jean Valjean's prisoner number in Les Misérables
- 24631 – Wedderburn-Etherington number[12]
- 24649 – 1572, palindromic in base 12: 1232112
- 24737 – one of five remaining Seventeen or Bust numbers in the Sierpinski problem
- 25011 – the first composite number that in base 10 remains composite after any insertion of a digit
- 25085 – Zeisel number[11]
- 25117 – cuban prime[9]
- 25200 – highly composite number[1]
- 25205 – largest number whose factorial is less than 10100000
- 25585 – square pyramidal number[4]
- 26214 – octahedral number[7]
- 26227 – cuban prime[9]
- 26861 – smallest number below which there are more primes of the form 4k + 1 than of the form 4k + 3, against Chebyshev's bias
- 26896 – 1642, palindromic in base 9: 408049
- 27000 – 303
- 27434 – square pyramidal number[4]
- 27559 – Zeisel number[11]
- 27648 – 11 × 22 × 33 × 44
- 27720 – highly composite number;[1] smallest number divisible by the numbers 1 to 12 (there is no smaller number divisible by the numbers 1 to 11)
- 27846 – harmonic divisor number[13]
- 28158 – pentagonal pyramidal number[2]
- 28374 – smallest integer to start a run of six consecutive integers with the same number of divisors
- 28561 – 134, 1192 + 1202, number that is simultaneously a square number and a centered square number, palindromic in base 12: 1464112
- 28595 – octahedral number[7]
- 28657 – Fibonacci number,[14] Markov number[15]
- 28900 – 1702, palindromic in base 13: 1020113
- 29241 – sum of the cubes of the first 18 positive integers
- 29341 – Carmichael number[16]
- 29370 – square pyramidal number[4]
- 29791 – 313
References
- 1 2 3 "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- 1 2 3 4 "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- 1 2 "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- 1 2 3 4 5 6 "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- 1 2 3 4 "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- 1 2 3 4 5 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A003261 : Woodall numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- 1 2 3 "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
- ↑ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.