ISM band

The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than telecommunications.[1] Examples of applications in these bands include radio-frequency process heating, microwave ovens, and medical diathermy machines. The powerful emissions of these devices can create electromagnetic interference and disrupt radio communication using the same frequency, so these devices were limited to certain bands of frequencies. In general, communications equipment operating in these bands must tolerate any interference generated by ISM applications, and users have no regulatory protection from ISM device operation.

Despite the intent of the original allocations, and because there are multiple allocations, in recent years the fastest-growing uses of these bands have been for short-range, low power communications systems. Cordless phones, Bluetooth devices, near field communication (NFC) devices, and wireless computer networks all use frequencies allocated to low power communications as well as ISM, although these low power emitters are not considered ISM.

ISM bands

The ISM bands are defined by the ITU Radio Regulations (article 5) in footnotes 5.138, 5.150, and 5.280 of the Radio Regulations. Individual countries' use of the bands designated in these sections may differ due to variations in national radio regulations. Because communication devices using the ISM bands must tolerate any interference from ISM equipment, unlicensed operations are typically permitted to use these bands, since unlicensed operation typically needs to be tolerant of interference from other devices anyway. The ISM bands share allocations with unlicensed and licensed operations; however, due to the high likelihood of harmful interference, licensed use of the bands is typically low. In the United States, uses of the ISM bands are governed by Part 18 of the Federal Communications Commission (FCC) rules, while Part 15 contains the rules for unlicensed communication devices, even those that share ISM frequencies. In Europe, the ETSI is responsible for governing ISM bands.

Frequency allocation

The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012).[2]

In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which is within the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared.

Example of frequency allocation
Frequency range Type Center frequency Availability Licensed users
6.765 MHz 6.795 MHz A 6.78 MHz Subject to local acceptance FIXED SERVICE & Mobile service
13.553 MHz 13.567 MHz B 13.56 MHz Worldwide FIXED & Mobile services except Aeronautical mobile (R) service
26.957 MHz 27.283 MHz B 27.12 MHz Worldwide FIXED & MOBILE SERVICE except Aeronautical mobile service, CB Radio
40.66 MHz 40.7 MHz B 40.68 MHz Worldwide Fixed, Mobile services & Earth exploration-satellite service
433.05 MHz 434.79 MHz A 433.92 MHz only in Region 1, subject to local acceptance AMATEUR SERVICE & RADIOLOCATION SERVICE, additional apply the provisions of footnote 5.280. For Australia see footnote AU.
902 MHz 928 MHz B 915 MHz Region 2 only (with some exceptions) FIXED, Mobile except aeronautical mobile & Radiolocation service; in Region 2 additional Amateur service
2.4 GHz 2.5 GHz B 2.45 GHz Worldwide FIXED, MOBILE, RADIOLOCATION, Amateur & Amateur-satellite service
5.725 GHz 5.875 GHz B 5.8 GHz Worldwide FIXED-SATELLITE, RADIOLOCATION, MOBILE, Amateur & Amateur-satellite service
24 GHz 24.25 GHz B 24.125 GHz Worldwide AMATEUR, AMATEUR-SATELLITE, RADIOLOCATION & Earth exploration-satellite service (active)
61 GHz 61.5 GHz A 61.25 GHz Subject to local acceptance FIXED, INTER-SATELLITE, MOBILE & RADIOLOCATION SERVICE
122 GHz 123 GHz A 122.5 GHz Subject to local acceptance EARTH EXPLORATION-SATELLITE (passive), FIXED, INTER-SATELLITE, MOBILE, SPACE RESEARCH (passive) & Amateur service
244 GHz 246 GHz A 245 GHz Subject to local acceptance RADIOLOCATION, RADIO ASTRONOMY, Amateur & Amateur-satellite service

Type A (footnote 5.138) = frequency bands are designated for ISM applications. The use of these frequency bands for ISM applications shall be subject to special authorization by the administration concerned, in agreement with other administrations whose radiocommunication services might be affected. In applying this provision, administrations shall have due regard to the latest relevant ITU-R Recommendations.

Type B (footnote 5.150) = frequency bands are also designated for ISM applications. Radiocommunication services operating within these bands must accept harmful interference which may be caused by these applications.

ITU RR, Footnote 5.280 = In Germany, Austria, Bosnia and Herzegovina, Croatia, Macedonia, Liechtenstein, Montenegro, Portugal, Serbia, Slovenia and Switzerland, the band 433.05-434.79 MHz (center frequency 433.92 MHz) is designated for ISM applications. Radiocommunication services of these countries operating within this band must accept harmful interference which may be caused by these applications.

Footnote AU, Australia is part of ITU Region 3 the band 433.05 to 434.79 MHz is not a designated ISM band in Australia, however the operation of low powered devices in the radiofrequency band 433.05 to 434.79 MHz is supported through Radiocommunications class licence for low interference potential devices (LIPDs)[3].

History

The ISM bands were first established at the International Telecommunications Conference of the ITU in Atlantic City, 1947. The American delegation specifically proposed several bands, including the now commonplace 2.4 GHz band, to accommodate the then nascent process of microwave heating;[4] however, FCC annual reports of that time suggest that much preparation was done ahead of these presentations.[5]

From the proceedings: "The delegate of the United States, referring to his request that the frequency 2450 Mc/s be allocated for I.S.M., indicated that there was in existence in the United States, and working on this frequency a diathermy machine and an electronic cooker, and that the latter might eventually be installed in transatlantic ships and airplanes. There was therefore some point in attempting to reach world agreement on this subject."

Radio frequencies in the ISM bands have been used for communication purposes, although such devices may experience interference from non-communication sources. In the United States, as early as 1958 Class D Citizens Band, a Part 95 service, was allocated to frequencies that are also allocated to ISM. [1]

In the U.S., the FCC first made unlicensed spread spectrum available in the ISM bands in rules adopted on May 9, 1985.[6]

Many other countries later developed similar regulations, enabling use of this technology. The FCC action was proposed by Michael Marcus of the FCC staff in 1980 and the subsequent regulatory action took five more years. It was part of a broader proposal to allow civil use of spread spectrum technology and was opposed at the time by mainstream equipment manufacturers and many radio system operators.[7]

ISM uses

For many people, the most commonly encountered ISM device is the home microwave oven operating at 2.45 GHz; however, many different kinds of ISM devices exist, which are predominantly found outside dwellings. Many industrial settings may use ISM devices in plastic welding processes. In medical settings, shortwave and microwave diathermy machines are ISM devices mostly commonly used for muscle relaxation. Microwave ablation, a type of interventional radiology, is an ISM application which treats solid tumors through the use of RF heating.

Some electrodeless lamp designs are ISM devices, which use RF emissions to excite fluorescent tubes. Sulfur lamps are commercially available plasma lamps, which use a 2.45 GHz magnetron to heat sulfur into a brightly glowing plasma.

Long-distance wireless power systems have been proposed and experimented with which would use high-power transmitters and rectennas, in lieu of overhead transmission lines and underground cables, to send power to remote locations. NASA has studied using microwave power transmission on 2.45 GHz to send energy collected by solar power satellites back to the ground.

Also in space applications, a Helicon Double Layer ion thruster is a prototype spacecraft propulsion engine which uses a 13.56 MHz transmission to break down and heat gas into plasma.

Non-ISM uses

In recent years ISM bands have also been shared with (non-ISM) license-free error-tolerant communications applications such as wireless sensor networks in the 915 MHz and 2.450 GHz bands, as well as wireless LANs and cordless phones in the 915 MHz, 2.450 GHz, and 5.800 GHz bands. Because unlicensed devices are required to be tolerant of ISM emissions in these bands, unlicensed low power users are generally able to operate in these bands without causing problems for ISM users. ISM equipment does not necessarily include a radio receiver in the ISM band (e.g. a microwave oven does not have a receiver).

In the United States, according to 47 CFR Part 15.5, low power communication devices must accept interference from licensed users of that frequency band, and the Part 15 device must not cause interference to licensed users. Note that the 915 MHz band should not be used in countries outside Region 2, except those that specifically allow it, such as Australia and Israel, especially those that use the GSM-900 band for cellphones. The ISM bands are also widely used for Radio-frequency identification (RFID) applications with the most commonly used band being the 13.56 MHz band used by systems compliant with ISO/IEC 14443 including those used by biometric passports and contactless smart cards.

In Europe, the use of the ISM band is covered by Short Range Device regulations issued by European Commission, based on technical recommendations by CEPT and standards by ETSI. In most of Europe, LPD433 band is allowed for license-free voice communication in addition to PMR446.

Wireless LAN devices use wavebands as follows:

IEEE 802.15.4, ZigBee and other personal area networks may use the 915 MHz and 2450 MHz ISM bands because of frequency sharing between different allocations.

Wireless LANs and cordless phones can also use bands other than those shared with ISM, but such uses require approval on a country by country basis. DECT phones use allocated spectrum outside the ISM bands that differs in Europe and North America. Ultra-wideband LANs require more spectrum than the ISM bands can provide, so the relevant standards such as IEEE 802.15.4a are designed to make use of spectrum outside the ISM bands. Despite the fact that these additional bands are outside the official ITU-R ISM bands, because they are used for the same types of low power personal communications, they are sometimes incorrectly referred to as ISM bands as well.

Also note that several brands of radio control equipment use the 2.4 GHz band range for low power remote control of toys, from gas powered cars to miniature aircraft.

Worldwide Digital Cordless Telecommunications or WDCT is a technology that uses the 2.4 GHz radio spectrum.

Google's Project Loon uses ISM bands (specifically 2.4 and 5.8 GHz bands) for balloon-to-balloon and balloon-to-ground communications.

Pursuant to 47 CFR Part 97 some ISM bands are used by licensed amateur radio operators for communication - including amateur television.

See also

Notes

    References

    1. "ARTICLE 1 - Terms and Definitions". life.itu.ch. International Telecommunication Union. 19 October 2009. 1.15. industrial, scientific and medical (ISM) applications (of radio frequency energy): Operation of equipment or appliances designed to generate and use locally radio frequency energy for industrial, scientific, medical, domestic or similar purposes, excluding applications in the field of telecommunications.
    2. ITU Radio Regulations, CHAPTER II – Frequencies, ARTICLE 5 Frequency allocations, Section IV – Table of Frequency Allocations
    3. ACMA (April 1999). "Spectrum at 434 MHz for low powered devices". Australian Communications and Media Authority. Australian Communications and Media Authority. Retrieved 28 June 2017.
    4. "Documents of the International Radio Conference (Atlantic City, 1947) - Doc. No. 1-100" (PDF). p. 464.
    5. Thirteenth Annual Report of the FCC, June 30, 1947 (PDF) (Report). pp. 8, 50–51.
    6. "Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations". Federal Communications Commission. June 18, 1985. Archived from the original (TXT) on March 14, 2007. Retrieved 2007-08-31.
    7. "The Genesis of Unlicensed Wireless Policy". George Mason University. April 4, 2008. Retrieved 2008-04-20.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.