2-Furonitrile

2-Furonitrile
Names
IUPAC name
furan-2-carbonitrile
Other names
2-Cyanofuran; 2-Furancarbonitrile; 2-Furyl cyanide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.009.581
Properties
C5H3NO
Molar mass 93.09 g·mol−1
Appearance colorless (yellow if impure)
Density 1.0650 @20 °C [1]
Boiling point 147[2] °C (297 °F; 420 K)
Hazards
Flash point 35 °C; 95 °F; 308 K
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

2-Furonitrile is a colorless derivative of furan possessing a nitrile group.

Synthesis

Industrial synthesis is based on the vapor phase ammoxidation of furfural with ammonia over bismuth molybdate catalyst at 440-480 °C.[3]

Numerous laboratory methods also exist; for the instance oxidative dehydration of furfural with ammonia salts using hypervalent iodine reagents[4] or n-bromosuccinimide.[5] From furfural aldoxime (with thionyl chloride-benzotriazole,[6] triphenylphosphine-iodine reagents,[7] or heating in DMSO[8]) and furoic acid amide (flash vacuum pyrolysis).[9]

Applications

2-Furonitrile currently has no major applications but it is used as an intermediate in pharmaceutical and fine chemical synthesis. It has been suggested as a potential sweetening agent, as it has about thirty times the sweetening power of sucrose.[10]

References

  1. P. A. Pavlov; Kul'nevich, V. G. (1986). "Synthesis of 5-substituted furannitriles and their reaction with hydrazine". Khimiya Geterotsiklicheskikh Soedinenii. 2: 181–186.
  2. Patrice Capdevielle; Lavigne, Andre; Maumy, Michel (1989). "Simple and efficient copper-catalyzed one-pot conversion of aldehydes into nitriles". Synthesis. 6: 451–452. doi:10.1055/s-1989-27285.
  3. Thomas J. Jennings, "Process for preparing furonitrile", US Patent 3,260,731 (1966)
  4. Chenjie Zhu; Sun, Chengguo; Wei, Yunyang (2010). "Direct oxidative conversion of alcohols, aldehydes and amines into nitriles using hypervalent iodine(III) reagent". Synthesis. 24: 4235–4241. doi:10.1055/s-0030-1258281.
  5. Bandgar, B. P.; Makone, S. S. (2006). "Organic Reactions in Water: Transformation of Aldehydes to Nitriles using NBS under Mild Conditions". Synthetic Communications. 36 (10): 1347–1352. ISSN 0039-7911. doi:10.1080/00397910500522009.
  6. Sachin S. Chaudhari; Akamanchi, Krishnacharya G. (1999). "Thionyl chloride-benzotriazole: an efficient system for transformation of aldoximes to nitriles". Synthetic Communications. 29 (10): 1741–1745. doi:10.1080/00397919908086161.
  7. A. Narsaiah; Sreenu, D.; Nagaiah, K. (2006). "Triphenylphosphine-iodine. An efficient reagent system for the synthesis of nitriles from aldoximes". Synthetic Communications. 36 (2): 137–140. doi:10.1080/00397910500333225.
  8. Aspinall, Helen C.; Beckingham, Oliver; Farrar, Michael D.; Greeves, Nicholas; Thomas, Christopher D. (2011). "A general and convenient route to oxazolyl ligands". Tetrahedron Letters. 52 (40): 5120–5123. ISSN 0040-4039. doi:10.1016/j.tetlet.2011.07.070.
  9. Jacqueline A. Campbell; McDougald, Graham; McNab, Hamish (2007). "Laboratory-scale synthesis of nitriles by catalyzed dehydration of amides and oximes under flash vacuum pyrolysis (FVP) conditions". Synthesis. 20: 3179–3184. doi:10.1055/s-2007-990782.
  10. Thomas J. Jennings, "Process for preparing furonitrile", US Patent 3,260,731 (1966)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.