101 (number)

100 101 102
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinal one hundred [and] one
Ordinal 101st
(one hundred [and] first)
Factorization prime
Prime 26th
Divisors 1, 101
Roman numeral CI
Binary 11001012
Ternary 102023
Quaternary 12114
Quinary 4015
Senary 2456
Octal 1458
Duodecimal 8512
Hexadecimal 6516
Vigesimal 5120
Base 36 2T36

101 (one hundred [and] one) is the natural number following 100 and preceding 102.

It is variously pronounced "one hundred and one" / "a hundred and one", "one hundred one" / "a hundred one", and "one oh one". As an ordinal number, 101st (one hundred [and] first), rather than 101th, is the correct form.

Look up one hundred and one or one hundred one in Wiktionary, the free dictionary.

In mathematics

101 is:

Given 101, the Mertens function returns 0.[4] It is the second prime having this property.[5]

For a 3-digit number in base 10, this number has a relatively simple divisibility test. The candidate number is split into groups of four, starting with the rightmost four, and added up to produce a 4-digit number. If this 4-digit number is of the form 1000a + 100b + 10a + b (where a and b are integers from 0 to 9), such as 3232 or 9797, or of the form 100b + b, such as 707 and 808, then the number is divisible by 101.[6]

On the seven-segment display of a calculator, 101 is both a strobogrammatic prime and a dihedral prime.

In science

In books

According to Books in Print, more books are now published with a title that begins with '101' than '100'. They usually describe or discuss a list of items, such as 101 Ways to... or 101 Questions and Answers About... . This marketing tool is used to imply that the customer is given a little extra information beyond books that include only 100 items. Some books have taken this marketing scheme even further with titles that begin with '102', '103', or '1001'. The number is used in this context as a slang term when referring to "a 101 document" what is usually referred to as a statistical survey or overview of some topic.

Room 101 is a torture chamber in the novel Nineteen Eighty-Four by George Orwell.

Creative Writing 101 by Raymond Carver, "A writer's values and craft. This was what the man (John Gardner) taught and what he stood for, and this is what I've kept by me in the years since that brief but all important time."

In education

In American university course numbering systems, the number 101 is often used for an introductory course at a beginner's level in a department's subject area. This common numbering system was designed to make transfer between colleges easier. In theory, any numbered course in one academic institution should bring a student to the same standard as a similarly numbered course at other institutions.[7] The term was first introduced by the University of Buffalo in 1929.[8]

Based on this usage, the term "101" has been extended to mean an introductory level of learning or a collection of introductory materials to a topic.

In other fields

References

Wikimedia Commons has media related to 101 (number).
  1. "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
  2. "Sloane's A062786 : Centered 10-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
  3. Prime Curios! 101
  4. "Sloane's A028442 : Numbers n such that Mertens' function is zero". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
  5. "Sloane's A100669 : Zeros of the Mertens function that are also prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  6. Renault, Marc (November 2006), "Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends", Math Horizons, 14 (2): 18–21, 42, JSTOR 25678653
  7. Forest, J.J.F. (2002) Higher education in the United States: an encyclopedia p.73. ABC-CLIO. ISBN 1-57607-248-7. Retrieved October 2011
  8. Engber, Daniel (6 September 2006). "101 101". Slate. Retrieved 9 May 2017.
  9. Engber, Daniel (6 September 2006), "101 101: How did intro classes get their trademark number?", Slate
  10. 101, Dictionary.com
  11. 101-Key "Enhanced" Keyboard Layout, Pcguide.com, retrieved 4 May 2009
  12. http://www.direct.gov.uk/en/CrimeJusticeAndTheLaw/Reportingcrimeandantisocialbehaviour/DG_185338
  13. Welcome to 101, Home Office, retrieved 5 April 2009
  14. iCar 101 - The ultimate roadable aircraft, retrieved 6 August 2010
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.