Sunrise

Just after sunrise over the Cửa Lò, Vietnam, July 2007

Sunrise or sun up is the instant at which the upper edge of the Sun appears over the horizon in the morning.[1] The term can also refer to the entire process of the Sun crossing the horizon and its accompanying atmospheric effects.[2]

Terminology

"Rise"

Although the Sun appears to "rise" from the horizon, it is actually the Earth's motion that causes the Sun to appear. The illusion of a moving Sun results from Earth observers being in a rotating reference frame; this apparent motion is so convincing that most cultures had mythologies and religions built around the geocentric model, which prevailed until astronomer Nicolaus Copernicus first formulated the heliocentric model in the 16th century.[3]

Architect Buckminster Fuller proposed the terms "sunsight" and "sunclipse" to better represent the heliocentric model, though the terms have not entered into common language.

Beginning and end

Astronomically, sunrise occurs for only an instant: the moment at which the upper limb of the Sun appears tangent to the horizon.[1] However, the term sunrise commonly refers to periods of time both before and after this point:

Measurement

This diagram of the Sun at sunrise (or sunset) shows the effects of atmospheric refraction.

Angle

Sunrise actually occurs before the Sun truly reaches the horizon because Earth's atmosphere refracts the Sun's image. At the horizon, the average amount of refraction is 34 arcminutes, though this amount varies based on atmospheric conditions.[1]

Also, unlike most other solar measurements, sunrise occurs when the Sun's upper limb, rather than its center, appears to cross the horizon. The apparent radius of the Sun at the horizon is 16 arcminutes.[1]

These two angles combine to define sunrise to occur when the Sun's center is 50 arcminutes below the horizon, or 90.83° from the zenith.[1]

Time of day

A sunrise over the western United States. The ISS orbits the globe in about 92 minutes therefore the crew experiences 16 sunrises and sunsets each day. Here, the station has not yet passed over the terminator, so the ground below it is still in darkness.

The timing of sunrise varies throughout the year and is also affected by the viewer's longitude and latitude, altitude, and time zone. These changes are driven by the axial tilt of Earth, daily rotation of the Earth, the planet's movement in its annual elliptical orbit around the Sun, and the Earth and Moon's paired revolutions around each other. The analemma can be used to make approximate predictions of the time of sunrise.

Time of sunrise in 2008 for Libreville, Gabon. Near the equator, the variation of the time of sunrise is mainly governed by the variation of the equation of time. See here for the sunrise chart of a different location.

In late winter and spring, sunrise as seen from temperate latitudes occurs earlier each day, reaching its earliest time near the summer solstice; although the exact date varies by latitude. After this point, the time of sunrise gets later each day, reaching its latest sometime around the winter solstice. The offset between the dates of the solstice and the earliest or latest sunrise time is caused by the eccentricity of Earth's orbit and the tilt of its axis, and is described by the analemma, which can be used to predict the dates.

Variations in atmospheric refraction can alter the time of sunrise by changing its apparent position. Near the poles, the time-of-day variation is exaggerated, since the Sun crosses the horizon at a very shallow angle and thus rises more slowly.[1]

Accounting for atmospheric refraction and measuring from the leading edge slightly increases the average duration of day relative to night. The sunrise equation, however, which is used to derive the time of sunrise and sunset, uses the Sun's physical center for calculation, neglecting atmospheric refraction and the non-zero angle subtended by the solar disc.

Location on the horizon

Neglecting the effects of refraction and the Sun's non-zero size, whenever sunrise occurs, in temperate regions it is always in the northeast quadrant from the March equinox to the September equinox and in the southeast quadrant from the September equinox to the March equinox.[4] Sunrises occur approximately due east on the March and September equinoxes for all viewers on Earth.[5] Exact calculations of the azimuths of sunrise on other dates are complex, but they can be estimated with reasonable accuracy by using the analemma.

Appearance

Sunrise over Placida Harbor, Florida

Colors

Colors 10 minutes before sunrise. Rocher Percé (Pierced Rock), Quebec, Canada.

Air molecules and airborne particles scatter white sunlight as it passes through the Earth's atmosphere. This is done by a combination of Rayleigh scattering and Mie scattering.[6]

As a ray of white sunlight travels through the atmosphere to an observer, some of the colors are scattered out of the beam by air molecules and airborne particles, changing the final color of the beam the viewer sees. Because the shorter wavelength components, such as blue and green, scatter more strongly, these colors are preferentially removed from the beam.[6]

At sunrise and sunset, when the path through the atmosphere is longer, the blue and green components are removed almost completely leaving the longer wavelength orange and red hues seen at those times. The remaining reddened sunlight can then be scattered by cloud droplets and other relatively large particles to light up the horizon red and orange.[7] The removal of the shorter wavelengths of light is due to Rayleigh scattering by air molecules and particles much smaller than the wavelength of visible light (less than 50 nm in diameter).[8][9] The scattering by cloud droplets and other particles with diameters comparable to or larger than the sunlight's wavelengths (more than 600 nm) is due to Mie scattering and is not strongly wavelength-dependent. Mie scattering is responsible for the light scattered by clouds, and also for the daytime halo of white light around the Sun (forward scattering of white light).[10][11][12]

Sunset colors are typically more brilliant than sunrise colors, because the evening air contains more particles than morning air.[6][7][9][12]

Ash from volcanic eruptions, trapped within the troposphere, tends to mute sunset and sunrise colors, while volcanic ejecta that is instead lofted into the stratosphere (as thin clouds of tiny sulfuric acid droplets), can yield beautiful post-sunset colors called afterglows and pre-sunrise glows. A number of eruptions, including those of Mount Pinatubo in 1991 and Krakatoa in 1883, have produced sufficiently high stratospheric sulfuric acid clouds to yield remarkable sunset afterglows (and pre-sunrise glows) around the world. The high altitude clouds serve to reflect strongly reddened sunlight still striking the stratosphere after sunset, down to the surface.

Optical illusions and other phenomena

This is a False Sunrise, a very particular kind of Parhelion

See also

References

  1. 1 2 3 4 5 6 U.S. Navy: Rise, Set, and Twilight Definitions
  2. 1 2 Sunrise – Definition and More from the Free Merriam-Webster Dictionary
  3. The Earth Is the Center of the Universe: Top 10 Science Mistakes
  4. Karen Masters (October 2004). "Curious About Astronomy: How does the position of Moonrise and Moonset change?". Curious About Astronomy? Ask an Astronomer. Cornell University Astronomy Department. Retrieved 2016-08-11.
  5. "Where Do the Sun and Stars Rise?". Stanford Solar Center. Retrieved 2012-03-20.
  6. 1 2 3 K. Saha (2008). The Earth's Atmosphere – Its Physics and Dynamics. Springer. p. 107. ISBN 978-3-540-78426-5.
  7. 1 2 B. Guenther, ed. (2005). Encyclopedia of Modern Optics. Vol. 1. Elsevier. p. 186.
  8. "Hyperphysics, Georgia State University". Hyperphysics.phy-astr.gsu.edu. Retrieved 2012-04-07.
  9. 1 2 Craig Bohren (ed.), Selected Papers on Scattering in the Atmosphere, SPIE Optical Engineering Press, Bellingham, WA, 1989
  10. Corfidi, Stephen F. (February 2009). "The Colors of Twilight and Sunset". Norman, OK: NOAA/NWS Storm Prediction Center.
  11. "Atmospheric Aerosols: What Are They, and Why Are They So Important?". nasa.gov. August 1996.
  12. 1 2 E. Hecht (2002). Optics (4th ed.). Addison Wesley. p. 88. ISBN 0-321-18878-0.
  13. "Red Sunset, Green Flash".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.