Interval vector
In musical set theory, an interval vector (also called an interval-class vector or ic vector) is an array that expresses the intervallic content of a pitch-class set. Often referred to as a PIC vector (or pitch-class interval vector), Michiel Schuijer suggests that APIC vector (or absolute pitch-class interval vector) is more accurate.
In twelve-tone equal temperament, an interval vector has six digits, with each digit representing the number of times an interval class appears in the set. Because interval classes are used, the interval vector for a given set remains the same, regardless of the set's permutation or vertical arrangement. The interval classes designated by each digit ascend from left to right. That is:
- minor seconds/major sevenths (1 or 11 semitones)
- major seconds/minor sevenths (2 or 10 semitones)
- minor thirds/major sixths (3 or 9 semitones)
- major thirds/minor sixths (4 or 8 semitones)
- perfect fourths/perfect fifths (5 or 7 semitones)
- tritones (6 semitones) (The tritone is inversionally related to itself.)
Interval class 0, representing unisons and octaves, is omitted.
In his 1960 book, The Harmonic Materials of Modern Music, Howard Hanson introduced a monomial method of notation for this concept, which he termed intervallic content: pemdnc.sbdatf [note 1] for what would now be written <abcdef>. The modern notation, introduced by Allen Forte, has considerable advantages and is extendable to any equal division of the octave.
A scale whose interval vector has six unique digits is said to have the deep scale property. Major, natural minor and modal scales have this property.
For a practical example, the interval vector for a C major triad in the root position, {C E G} ( Play ), is <001110>. This means that the set has one major third or minor sixth (i.e. from C to E, or E to C), one minor third or major sixth (i.e. from E to G, or G to E), and one perfect fifth or perfect fourth (i.e. from C to G, or G to C). As the interval vector does not change with transposition or inversion, it belongs to the entire set class, meaning that <001110> is the vector of all major (and minor) triads. However, it should be noted that some interval vectors correspond to more than one sets that cannot be transposed or inverted to produce the other. (These are called Z-related sets, explained below).
For a set of x elements, the sum of all the numbers in the set's interval vector equals (x*(x-1))/2.
While primarily an analytic tool, interval vectors can also be useful for composers, as they quickly show the sound qualities that are created by different collections of pitch class. That is, sets with high concentrations of conventionally dissonant intervals (i.e., seconds and sevenths) generally sound more dissonant, while sets with higher numbers of conventionally consonant intervals (i.e., thirds and sixths) sound more consonant. While the actual perception of consonance and dissonance involves many contextual factors, such as register, an interval vector can nevertheless be a helpful tool.
An expanded form of the interval vector is also used in transformation theory, as set out in David Lewin's Generalized Musical Intervals and Transformations.
Z-relation
In musical set theory, a Z-relation, also called isomeric relation, is a relation between two pitch class sets in which the two sets have the same intervallic content (i.e., they have the same interval vector), but they are of different Tn-type and Tn/TnI-type. That is to say, one set cannot be derived from the other through transposition or inversion.[1] For example, the two sets {0,1,4,6} and {0,1,3,7} have the same interval vector (<1,1,1,1,1,1>) but they are not transpositionally or inversionally related.
In the case of hexachords each may be referred to as a Z-hexachord. Any hexachord not of the "Z" type is its own complement while the complement of a Z-hexachord is its Z-correspondent, for example 6-Z3 and 6-Z36.[2] See: 6-Z44, 6-Z17, 6-Z11, and Forte number.
The term, for "zygotic" (yoked or the fusion of two reproductive cells),[3] originated with Allen Forte in 1964, but the notion seems to have first been considered by Howard Hanson. Hanson called this the isomeric relationship, and defined two such sets as isomeric.[4] According to Michiel Schuijer (2008), "the discovery of the relation," was, "reported," by David Lewin in 1960.[3][5]
Though it is commonly observed that Z-related sets always occur in pairs, David Lewin noted that this is a result of twelve-tone equal temperament (12-ET). In 16-ET, Z-related sets are found as triplets. Lewin's student Jonathan Wild continued this work for other tuning systems, finding Z-related tuplets with up to 16 members in higher ET systems.
Straus argues, "[sets] in the Z-relation will sound similar because they have the same interval content,"[6] which has led certain composers to exploit the Z-relation in their work. For instance, the play between {0,1,4,6} and {0,1,3,7} is clear in Elliot Carter's Second String Quartet.
Multiplication
Some Z-related chords are connected by M or IM (multiplication by 5 or multiplication by 7), due to identical entries for 1 and 5 on the interval vector.[3]
See also
Notes
- ↑ To quantify the consonant-dissonant content of a set, Hanson ordered the intervals according to their dissonance degree, with p=perfect fifth, m=major third, n=minor third, s=major second, d=(more dissonant) minor second, t=tritone
Sources
- 1 2 Schuijer, Michael (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts, p.99. ISBN 978-1-58046-270-9.
- 1 2 Forte, Allen (1977). The Structure of Atonal Music {New Haven and London: Yale University Press), p. 79. ISBN 0-300-02120-8.
- 1 2 3 Schuijer (2008), p.98 and 98n18. The meaning of "Z" was finally revealed on Nov. 17, 2004.
- ↑ Hanson, Howard (1960). Harmonic Materials of Modern Music (New York: Appleton-Century-Crofts), p. . ISBN 0-89197-207-2.
- ↑ Lewin, David. "The Intervallic Content of a Collection of Notes, Intervallic Relations between a Collection of Notes and its Complement: an Application to Schoenberg’s Hexachordal Pieces", Journal of Music Theory 4/1 (1960): 98–101.
- ↑ Straus (1990). Introduction to Post-Tonal Theory, 67. ISBN 0-13-189890-6. Cited in Schuijer (2008), p.125.
Further reading
- Rahn, John (1980). Basic Atonal Theory. ISBN 0-02-873160-3.
External links
- Set classes and interval-class content
- Introduction to Post-Functional Music Analysis: Post-Functional Theory Terminology by Robert T. Kelley
- Twentieth Century Pitch Theory: Some Useful Terms and Techniques
|