Virtual private network

"VPN" redirects here. For other uses, see VPN (disambiguation).
VPN connectivity overview

A virtual private network (VPN) extends a private network across a public network, such as the Internet. It enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network, and thus are benefiting from the functionality, security and management policies of the private network.[1] A VPN is created by establishing a virtual point-to-point connection through the use of dedicated connections, virtual tunnelling protocols, or traffic encryption.

A VPN spanning the Internet is similar to a wide area network (WAN). From a user perspective, the extended network resources are accessed in the same way as resources available within the private network.[2] Traditional VPNs are characterized by a point-to-point topology, and they do not tend to support or connect broadcast domains. Therefore, communication, software, and networking, which are based on OSI layer 2 and broadcast packets, such as NetBIOS used in Windows networking, may not be fully supported or work exactly as they would on a local, area network (LAN). VPN variants, such as Virtual Private LAN Service (VPLS), and layer 2 tunnelling protocols, are designed to overcome this limitation.

VPNs allow employees to securely access the corporate intranet while travelling outside the office. Similarly, VPNs securely connect geographically separated offices of an organization, creating one cohesive network. VPN technology is also used by individual Internet users to secure their wireless transactions, to circumvent geo-restrictions and censorship, and to connect to proxy servers for the purpose of protecting personal identity and location.

Types

Early data networks allowed VPN-style remote connectivity through dial-up modem or through leased line connections utilizing Frame Relay and Asynchronous Transfer Mode (ATM) virtual circuits, provisioned through a network owned and operated by telecommunication carriers. These networks are not considered true VPNs because they passively secure the data being transmitted by the creation of logical data streams.[3] They have been replaced by VPNs based on IP and IP/Multi-protocol Label Switching (MPLS) Networks, due to significant cost-reductions and increased bandwidth[4] provided by new technologies such as Digital Subscriber Line (DSL)[5] and fiber-optic networks.

VPNs can be either remote-access (connecting a computer to a network) or site-to-site (connecting two networks). In a corporate setting, remote-access VPNs allow employees to access their company's intranet from home or while travelling outside the office, and site-to-site VPNs allow employees in geographically disparate offices to share one cohesive virtual network. A VPN can also be used to interconnect two similar networks over a dissimilar middle network; for example, two IPv6 networks over an IPv4 network.[6]

VPN systems may be classified by:

Security mechanisms

VPNs cannot make online connections completely anonymous, but they can usually increase privacy and security. To prevent disclosure of private information, VPNs typically allow only authenticated remote access using tunnelling protocols and encryption techniques.

The VPN security model provides:

Secure VPN protocols include the following:

Routing

Tunnelling protocols can operate in a point-to-point network topology that would theoretically not be considered as a VPN, because a VPN by definition is expected to support arbitrary and changing sets of network nodes. But since most router implementations support a software-defined tunnel interface, customer-provisioned VPNs often are simply defined tunnels running conventional routing protocols.

Provider-provisioned VPN building-blocks

Depending on whether a provider-provisioned VPN (PPVPN) operates in layer 2 or layer 3, the building blocks described below may be L2 only, L3 only, or combine them both. Multi-protocol label switching (MPLS) functionality blurs the L2-L3 identity.

RFC 4026 generalized the following terms to cover L2 and L3 VPNs, but they were introduced in RFC 2547.[14] More information on the devices below can also be found in Lewis, Cisco Press.[15]

Customer (C) devices

A device that is within a customer's network and not directly connected to the service provider's network. C devices are not aware of the VPN.

Customer Edge device (CE)

A device at the edge of the customer's network which provides access to the PPVPN. Sometimes it's just a demarcation point between provider and customer responsibility. Other providers allow customers to configure it.

Provider edge device (PE)

A PE is a device, or set of devices, at the edge of the provider network which connects to customer networks through CE devices and presents the provider's view of the customer site. PEs are aware of the VPNs that connect through them, and maintain VPN state.

Provider device (P)

A P device operates inside the provider's core network and does not directly interface to any customer endpoint. It might, for example, provide routing for many provider-operated tunnels that belong to different customers' PPVPNs. While the P device is a key part of implementing PPVPNs, it is not itself VPN-aware and does not maintain VPN state. Its principal role is allowing the service provider to scale its PPVPN offerings, for example, by acting as an aggregation point for multiple PEs. P-to-P connections, in such a role, often are high-capacity optical links between major locations of providers.

User-visible PPVPN services

This section deals with the types of VPN considered in the IETF.

OSI Layer 2 services

Virtual LAN

A Layer 2 technique that allow for the coexistence of multiple LAN broadcast domains, interconnected via trunks using the IEEE 802.1Q trunking protocol. Other trunking protocols have been used but have become obsolete, including Inter-Switch Link (ISL), IEEE 802.10 (originally a security protocol but a subset was introduced for trunking), and ATM LAN Emulation (LANE).

Virtual private LAN service (VPLS)

Developed by IEEE, VLANs allow multiple tagged LANs to share common trunking. VLANs frequently comprise only customer-owned facilities. Whereas VPLS as described in the above section (OSI Layer 1 services) supports emulation of both point-to-point and point-to-multipoint topologies, the method discussed here extends Layer 2 technologies such as 802.1d and 802.1q LAN trunking to run over transports such as Metro Ethernet.

As used in this context, a VPLS is a Layer 2 PPVPN, rather than a private line, emulating the full functionality of a traditional local area network (LAN). From a user standpoint, a VPLS makes it possible to interconnect several LAN segments over a packet-switched, or optical, provider core; a core transparent to the user, making the remote LAN segments behave as one single LAN.[16]

In a VPLS, the provider network emulates a learning bridge, which optionally may include VLAN service.

Pseudo wire (PW)

PW is similar to VPLS, but it can provide different L2 protocols at both ends. Typically, its interface is a WAN protocol such as Asynchronous Transfer Mode or Frame Relay. In contrast, when aiming to provide the appearance of a LAN contiguous between two or more locations, the Virtual Private LAN service or IPLS would be appropriate.

Ethernet over IP tunneling

EtherIP (RFC 3378) is an Ethernet over IP tunnelling protocol specification. EtherIP has only packet encapsulation mechanism. It has no confidentiality nor message integrity protection. EtherIP was introduced in the FreeBSD network stack [17] and the SoftEther VPN[18] server program.

IP-only LAN-like service (IPLS)

A subset of VPLS, the CE devices must have L3 capabilities; the IPLS presents packets rather than frames. It may support IPv4 or IPv6.

OSI Layer 3 PPVPN architectures

This section discusses the main architectures for PPVPNs, one where the PE disambiguates duplicate addresses in a single routing instance, and the other, virtual router, in which the PE contains a virtual router instance per VPN. The former approach, and its variants, have gained the most attention.

One of the challenges of PPVPNs involves different customers using the same address space, especially the IPv4 private address space.[19] The provider must be able to disambiguate overlapping addresses in the multiple customers' PPVPNs.

BGP/MPLS PPVPN

In the method defined by RFC 2547, BGP extensions advertise routes in the IPv4 VPN address family, which are of the form of 12-byte strings, beginning with an 8-byte Route Distinguisher (RD) and ending with a 4-byte IPv4 address. RDs disambiguate otherwise duplicate addresses in the same PE.

PEs understand the topology of each VPN, which are interconnected with MPLS tunnels, either directly or via P routers. In MPLS terminology, the P routers are Label Switch Routers without awareness of VPNs.

Virtual router PPVPN

The Virtual Router architecture,[20][21] as opposed to BGP/MPLS techniques, requires no modification to existing routing protocols such as BGP. By the provisioning of logically independent routing domains, the customer operating a VPN is completely responsible for the address space. In the various MPLS tunnels, the different PPVPNs are disambiguated by their label, but do not need routing distinguishers.

Unencrypted tunnels

Main article: Tunneling protocol

Some virtual networks may not use encryption to protect the privacy of data. While VPNs often provide security, an unencrypted overlay network does not neatly fit within the secure or trusted categorization. For example, a tunnel set up between two hosts that used Generic Routing Encapsulation (GRE) would in fact be a virtual private network, but neither secure nor trusted.

Native plaintext tunnelling protocols include Layer 2 Tunnelling Protocol (L2TP) when it is set up without IPsec and Point-to-Point Tunnelling Protocol (PPTP) or Microsoft Point-to-Point Encryption (MPPE).

Trusted delivery networks

Trusted VPNs do not use cryptographic tunnelling, and instead rely on the security of a single provider's network to protect the traffic.[22]

From the security standpoint, VPNs either trust the underlying delivery network, or must enforce security with mechanisms in the VPN itself. Unless the trusted delivery network runs among physically secure sites only, both trusted and secure models need an authentication mechanism for users to gain access to the VPN.

VPNs in mobile environments

Mobile virtual private networks are used in settings where an endpoint of the VPN is not fixed to a single IP address, but instead roams across various networks such as data networks from cellular carriers or between multiple Wi-Fi access points.[27] Mobile VPNs have been widely used in public safety, where they give law enforcement officers access to mission-critical applications, such as computer-assisted dispatch and criminal databases, while they travel between different subnets of a mobile network.[28] They are also used in field service management and by healthcare organizations,[29] among other industries.

Increasingly, mobile VPNs are being adopted by mobile professionals who need reliable connections.[29] They are used for roaming seamlessly across networks and in and out of wireless coverage areas without losing application sessions or dropping the secure VPN session. A conventional VPN can not withstand such events because the network tunnel is disrupted, causing applications to disconnect, time out,[27] or fail, or even cause the computing device itself to crash.[29]

Instead of logically tying the endpoint of the network tunnel to the physical IP address, each tunnel is bound to a permanently associated IP address at the device. The mobile VPN software handles the necessary network authentication and maintains the network sessions in a manner transparent to the application and the user.[27] The Host Identity Protocol (HIP), under study by the Internet Engineering Task Force, is designed to support mobility of hosts by separating the role of IP addresses for host identification from their locator functionality in an IP network. With HIP a mobile host maintains its logical connections established via the host identity identifier while associating with different IP addresses when roaming between access networks.

VPN on routers

With the increasing use of VPNs, many have started deploying VPN connectivity on routers for additional security and encryption of data transmission by using various cryptographic techniques.[30] Setting up VPN services on a router allows any connected device to use the VPN network while it is enabled. This also creates VPN services on devices that do not have native VPN clients such as smart-TVs, gaming consoles etc.

Many router manufacturers, such as Cisco, Linksys, Asus, and Netgear supply their routers with built-in VPN clients.

Since these routers do not support all the major VPN protocols, such as OpenVPN.

Limitations: Not every router compatible with open source firmware which depends on the built-in flash memory and processor. Firmwares like DD-WRT require a minimum of 2 MiB flash memory and Broadcom chipsets. Setting up VPN services on a router requires a deeper knowledge of network security and careful installation. Minor misconfiguration of VPN connections can leave the network vulnerable. Performance will vary depending on the ISP and their reliability.[31][32]

Vulnerabilities

In November 2015, the VPN company Perfect Privacy discovered a major vulnerability, which they call 'Port Fail, affecting all VPN protocols (OpenVPN, IPSec, etc.). 'Port Fail' allows an attacker to reveal the real IP-address of VPN users by using the port forwarding method. Only the VPN companies which allow port forwarding are concerned by this flaw.

Networking limitations

One major limitation of traditional VPNs is that they are point-to-point, and do not tend to support or connect broadcast domains. Therefore, communication, software, and networking, which are based on layer 2 and broadcast packets, such as NetBIOS used in Windows networking, may not be fully supported or work exactly as they would on a real LAN. Variants on VPN, such as Virtual Private LAN Service (VPLS), and layer 2 tunneling protocols, are designed to overcome this limitation.

See also

References

  1. Mason, Andrew G. (2002). Cisco Secure Virtual Private Network. Cisco Press. p. 7.
  2. Microsoft Technet. "Virtual Private Networking: An Overview".
  3. Cisco Systems, et al. Internet working Technologies Handbook, Third Edition. Cisco Press, 2000, p. 232.
  4. Lewis, Mark. Comparing, Designing. And Deploying VPNs. Cisco Press, 2006, p. 5
  5. International Engineering Consortium. Digital Subscriber Line 2001. Intl. Engineering Consortium, 2001, p. 40.
  6. Technet Lab. "IPv6 traffic over VPN connections".
  7. RFC 6434, "IPv6 Node Requirements", E. Jankiewicz, J. Loughney, T. Narten (December 2011)
  8. SoftEther VPN: Using HTTPS Protocol to Establish VPN Tunnels
  9. "OpenConnect". Retrieved 2013-04-08. OpenConnect is a client for Cisco's AnyConnect SSL VPN [...] OpenConnect is not officially supported by, or associated in any way with, Cisco Systems. It just happens to interoperate with their equipment.
  10. Trademark Applications and Registrations Retrieval (TARR)
  11. OpenBSD ssh manual page, VPN section
  12. Unix Toolbox section on SSH VPN
  13. Ubuntu SSH VPN how-to
  14. E. Rosen & Y. Rekhter (March 1999). "RFC 2547 BGP/MPLS VPNs". Internet Engineering Task Force (IETF).
  15. Lewis, Mark (2006). Comparing, designing, and deploying VPNs (1st print. ed.). Indianapolis, Ind.: Cisco Press. pp. 5–6. ISBN 1587051796.
  16. Ethernet Bridging (OpenVPN)
  17. Glyn M Burton: RFC 3378 EtherIP with FreeBSD, 03 February 2011
  18. net-security.org news: Multi-protocol SoftEther VPN becomes open source, January 2014
  19. Address Allocation for Private Internets, RFC 1918, Y. Rekhter et al., February 1996
  20. RFC 2917, A Core MPLS IP VPN Architecture
  21. RFC 2918, E. Chen (September 2000)
  22. Cisco Systems, Inc. (2004). Internetworking Technologies Handbook. Networking Technology Series (4 ed.). Cisco Press. p. 233. ISBN 9781587051197. Retrieved 2013-02-15. [...] VPNs using dedicated circuits, such as Frame Relay [...] are sometimes called trusted VPNs, because customers trust that the network facilities operated by the service providers will not be compromised.
  23. Layer Two Tunneling Protocol "L2TP", RFC 2661, W. Townsley et al., August 1999
  24. IP Based Virtual Private Networks, RFC 2341, A. Valencia et al., May 1998
  25. Point-to-Point Tunneling Protocol (PPTP), RFC 2637, K. Hamzeh et al., July 1999
  26. "Difference Between PPTP And L2TP Protocols". Retrieved 2016-02-09.
  27. 1 2 3 Phifer, Lisa. "Mobile VPN: Closing the Gap", SearchMobileComputing.com, July 16, 2006.
  28. Willett, Andy. "Solving the Computing Challenges of Mobile Officers", www.officer.com, May, 2006.
  29. 1 2 3 Cheng, Roger. "Lost Connections", The Wall Street Journal, December 11, 2007.
  30. "Encryption and Security Protocols in a VPN". Retrieved 2015-09-23.
  31. 31West - Nancy Pais. "VPN on Routers: Introduction".
  32. "How to Configure VPN on a Router?".

Further reading

This article is issued from Wikipedia - version of the Wednesday, February 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.