Uniform 8-polytope

Graphs of three regular and related uniform polytopes.

8-simplex

Rectified 8-simplex

Truncated 8-simplex

Cantellated 8-simplex

Runcinated 8-simplex

Stericated 8-simplex

Pentellated 8-simplex

Hexicated 8-simplex

Heptellated 8-simplex

8-orthoplex

Rectified 8-orthoplex

Truncated 8-orthoplex

Cantellated 8-orthoplex

Runcinated 8-orthoplex

Hexicated 8-orthoplex

Cantellated 8-cube

Runcinated 8-cube

Stericated 8-cube

Pentellated 8-cube

Hexicated 8-cube

Heptellated 8-cube

8-cube

Rectified 8-cube

Truncated 8-cube

8-demicube

Truncated 8-demicube

Cantellated 8-demicube

Runcinated 8-demicube

Stericated 8-demicube

Pentellated 8-demicube

Hexicated 8-demicube

421

142

241

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.

A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets.

Regular 8-polytopes

Regular 8-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v}, with v {p,q,r,s,t,u} 7-polytope facets around each peak.

There are exactly three such convex regular 8-polytopes:

  1. {3,3,3,3,3,3,3} - 8-simplex
  2. {4,3,3,3,3,3,3} - 8-cube
  3. {3,3,3,3,3,3,4} - 8-orthoplex

There are no nonconvex regular 8-polytopes.

Characteristics

The topology of any given 8-polytope is defined by its Betti numbers and torsion coefficients.[1]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]

Uniform 8-polytopes by fundamental Coxeter groups

Uniform 8-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

# Coxeter group Forms
1A8 [37]135
2BC8[4,36]255
3D8[35,1,1]191 (64 unique)
4E8[34,2,1]255

Selected regular and uniform 8-polytopes from each family include:

  1. Simplex family: A8 [37] -
    • 135 uniform 8-polytopes as permutations of rings in the group diagram, including one regular:
      1. {37} - 8-simplex or ennea-9-tope or enneazetton -
  2. Hypercube/orthoplex family: B8 [4,36] -
    • 255 uniform 8-polytopes as permutations of rings in the group diagram, including two regular ones:
      1. {4,36} - 8-cube or octeract-
      2. {36,4} - 8-orthoplex or octacross -
  3. Demihypercube D8 family: [35,1,1] -
    • 191 uniform 8-polytopes as permutations of rings in the group diagram, including:
      1. {3,35,1} - 8-demicube or demiocteract, 151 - ; also as h{4,36} .
      2. {3,3,3,3,3,31,1} - 8-orthoplex, 511 -
  4. E-polytope family E8 family: [34,1,1] -
    • 255 uniform 8-polytopes as permutations of rings in the group diagram, including:
      1. {3,3,3,3,32,1} - Thorold Gosset's semiregular 421,
      2. {3,34,2} - the uniform 142, ,
      3. {3,3,34,1} - the uniform 241,

Uniform prismatic forms

There are many uniform prismatic families, including:

# Coxeter group Coxeter-Dynkin diagram
7+1
1A7A1 [3,3,3,3,3,3]×[ ]
2B7A1[4,3,3,3,3,3]×[ ]
3D7A1[34,1,1]×[ ]
4E7A1[33,2,1]×[ ]
6+2
1A6I2(p) [3,3,3,3,3]×[p]
2B6I2(p) [4,3,3,3,3]×[p]
3D6I2(p) [33,1,1]×[p]
4E6I2(p) [3,3,3,3,3]×[p]
6+1+1
1A6A1A1 [3,3,3,3,3]×[ ]x[ ]
2B6A1A1 [4,3,3,3,3]×[ ]x[ ]
3D6A1A1 [33,1,1]×[ ]x[ ]
4E6A1A1 [3,3,3,3,3]×[ ]x[ ]
5+3
1A5A3 [34]×[3,3]
2B5A3[4,33]×[3,3]
3D5A3[32,1,1]×[3,3]
4A5B3 [34]×[4,3]
5B5B3[4,33]×[4,3]
6D5B3[32,1,1]×[4,3]
7A5H3 [34]×[5,3]
8B5H3[4,33]×[5,3]
9D5H3[32,1,1]×[5,3]
5+2+1
1 A5I2(p)A1 [3,3,3]×[p]×[ ]
2 B5I2(p)A1 [4,3,3]×[p]×[ ]
3 D5I2(p)A1 [32,1,1]×[p]×[ ]
5+1+1+1
1 A5A1A1A1 [3,3,3]×[ ]×[ ]×[ ]
2 B5A1A1A1 [4,3,3]×[ ]×[ ]×[ ]
3 D5A1A1A1 [32,1,1]×[ ]×[ ]×[ ]
4+4
1A4A4[3,3,3]×[3,3,3]
2 B4A4[4,3,3]×[3,3,3]
3D4A4[31,1,1]×[3,3,3]
4 F4A4[3,4,3]×[3,3,3]
5 H4A4[5,3,3]×[3,3,3]
6 B4B4[4,3,3]×[4,3,3]
7D4B4[31,1,1]×[4,3,3]
8 F4B4[3,4,3]×[4,3,3]
9 H4B4[5,3,3]×[4,3,3]
10D4D4[31,1,1]×[31,1,1]
11 F4D4[3,4,3]×[31,1,1]
12 H4D4[5,3,3]×[31,1,1]
13 F4×F4[3,4,3]×[3,4,3]
14 H4×F4[5,3,3]×[3,4,3]
15 H4H4[5,3,3]×[5,3,3]
4+3+1
1 A4A3A1 [3,3,3]×[3,3]×[ ]
2 A4B3A1 [3,3,3]×[4,3]×[ ]
3 A4H3A1 [3,3,3]×[5,3]×[ ]
4 B4A3A1 [4,3,3]×[3,3]×[ ]
5 B4B3A1 [4,3,3]×[4,3]×[ ]
6 B4H3A1 [4,3,3]×[5,3]×[ ]
7 H4A3A1 [5,3,3]×[3,3]×[ ]
8 H4B3A1 [5,3,3]×[4,3]×[ ]
9 H4H3A1 [5,3,3]×[5,3]×[ ]
10 F4A3A1 [3,4,3]×[3,3]×[ ]
11 F4B3A1 [3,4,3]×[4,3]×[ ]
12 F4H3A1 [3,4,3]×[5,3]×[ ]
13 D4A3A1 [31,1,1]×[3,3]×[ ]
14 D4B3A1 [31,1,1]×[4,3]×[ ]
15 D4H3A1 [31,1,1]×[5,3]×[ ]
4+2+2
...
4+2+1+1
...
4+1+1+1+1
...
3+3+2
1 A3A3I2(p)[3,3]×[3,3]×[p]
2 B3A3I2(p)[4,3]×[3,3]×[p]
3 H3A3I2(p)[5,3]×[3,3]×[p]
4 B3B3I2(p)[4,3]×[4,3]×[p]
5 H3B3I2(p)[5,3]×[4,3]×[p]
6 H3H3I2(p)[5,3]×[5,3]×[p]
3+3+1+1
1 A32A12[3,3]×[3,3]×[ ]×[ ]
2 B3A3A12[4,3]×[3,3]×[ ]×[ ]
3 H3A3A12[5,3]×[3,3]×[ ]×[ ]
4 B3B3A12[4,3]×[4,3]×[ ]×[ ]
5 H3B3A12[5,3]×[4,3]×[ ]×[ ]
6 H3H3A12[5,3]×[5,3]×[ ]×[ ]
3+2+2+1
1 A3I2(p)I2(q)A1 [3,3]×[p]×[q]×[ ]
2 B3I2(p)I2(q)A1 [4,3]×[p]×[q]×[ ]
3 H3I2(p)I2(q)A1 [5,3]×[p]×[q]×[ ]
3+2+1+1+1
1 A3I2(p)A13 [3,3]×[p]×[ ]x[ ]×[ ]
2 B3I2(p)A13 [4,3]×[p]×[ ]x[ ]×[ ]
3 H3I2(p)A13 [5,3]×[p]×[ ]x[ ]×[ ]
3+1+1+1+1+1
1 A3A15 [3,3]×[ ]x[ ]×[ ]x[ ]×[ ]
2 B3A15 [4,3]×[ ]x[ ]×[ ]x[ ]×[ ]
3 H3A15 [5,3]×[ ]x[ ]×[ ]x[ ]×[ ]
2+2+2+2
1 I2(p)I2(q)I2(r)I2(s) [p]×[q]×[r]×[s]
2+2+2+1+1
1 I2(p)I2(q)I2(r)A12 [p]×[q]×[r]×[ ]×[ ]
2+2+1+1+1+1
2 I2(p)I2(q)A14 [p]×[q]×[ ]×[ ]×[ ]×[ ]
2+1+1+1+1+1+1
1 I2(p)A16 [p]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]
1+1+1+1+1+1+1+1
1 A18 [ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]

The A8 family

The A8 family has symmetry of order 362880 (9 factorial).

There are 135 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. (128+8-1 cases) These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.

See also a list of 8-simplex polytopes for symmetric Coxeter plane graphs of these polytopes.

# Coxeter-Dynkin diagram Truncation
indices
Johnson name Basepoint Element counts
7 6 5 4 3 2 1 0
1

t0 8-simplex (ene) (0,0,0,0,0,0,0,0,1) 9 36 84 126 126 84 36 9
2

t1 Rectified 8-simplex (rene) (0,0,0,0,0,0,0,1,1) 18 108 336 630 576 588 252 36
3

t2 Birectified 8-simplex (bene) (0,0,0,0,0,0,1,1,1) 18 144 588 1386 2016 1764 756 84
4

t3 Trirectified 8-simplex (trene) (0,0,0,0,0,1,1,1,1) 1260 126
5

t0,1 Truncated 8-simplex (tene) (0,0,0,0,0,0,0,1,2) 288 72
6

t0,2 Cantellated 8-simplex (0,0,0,0,0,0,1,1,2) 1764 252
7

t1,2 Bitruncated 8-simplex (0,0,0,0,0,0,1,2,2) 1008 252
8

t0,3 Runcinated 8-simplex (0,0,0,0,0,1,1,1,2) 4536 504
9

t1,3 Bicantellated 8-simplex (0,0,0,0,0,1,1,2,2) 5292 756
10

t2,3 Tritruncated 8-simplex (0,0,0,0,0,1,2,2,2) 2016 504
11

t0,4 Stericated 8-simplex (0,0,0,0,1,1,1,1,2) 6300 630
12

t1,4 Biruncinated 8-simplex (0,0,0,0,1,1,1,2,2) 11340 1260
13

t2,4 Tricantellated 8-simplex (0,0,0,0,1,1,2,2,2) 8820 1260
14

t3,4 Quadritruncated 8-simplex (0,0,0,0,1,2,2,2,2) 2520 630
15

t0,5 Pentellated 8-simplex (0,0,0,1,1,1,1,1,2) 5040 504
16

t1,5 Bistericated 8-simplex (0,0,0,1,1,1,1,2,2) 12600 1260
17

t2,5 Triruncinated 8-simplex (0,0,0,1,1,1,2,2,2) 15120 1680
18

t0,6 Hexicated 8-simplex (0,0,1,1,1,1,1,1,2) 2268 252
19

t1,6 Bipentellated 8-simplex (0,0,1,1,1,1,1,2,2) 7560 756
20

t0,7 Heptellated 8-simplex (0,1,1,1,1,1,1,1,2) 504 72
21

t0,1,2 Cantitruncated 8-simplex (0,0,0,0,0,0,1,2,3) 2016 504
22

t0,1,3 Runcitruncated 8-simplex (0,0,0,0,0,1,1,2,3) 9828 1512
23

t0,2,3 Runcicantellated 8-simplex (0,0,0,0,0,1,2,2,3) 6804 1512
24

t1,2,3 Bicantitruncated 8-simplex (0,0,0,0,0,1,2,3,3) 6048 1512
25

t0,1,4 Steritruncated 8-simplex (0,0,0,0,1,1,1,2,3) 20160 2520
26

t0,2,4 Stericantellated 8-simplex (0,0,0,0,1,1,2,2,3) 26460 3780
27

t1,2,4 Biruncitruncated 8-simplex (0,0,0,0,1,1,2,3,3) 22680 3780
28

t0,3,4 Steriruncinated 8-simplex (0,0,0,0,1,2,2,2,3) 12600 2520
29

t1,3,4 Biruncicantellated 8-simplex (0,0,0,0,1,2,2,3,3) 18900 3780
30

t2,3,4 Tricantitruncated 8-simplex (0,0,0,0,1,2,3,3,3) 10080 2520
31

t0,1,5 Pentitruncated 8-simplex (0,0,0,1,1,1,1,2,3) 21420 2520
32

t0,2,5 Penticantellated 8-simplex (0,0,0,1,1,1,2,2,3) 42840 5040
33

t1,2,5 Bisteritruncated 8-simplex (0,0,0,1,1,1,2,3,3) 35280 5040
34

t0,3,5 Pentiruncinated 8-simplex (0,0,0,1,1,2,2,2,3) 37800 5040
35

t1,3,5 Bistericantellated 8-simplex (0,0,0,1,1,2,2,3,3) 52920 7560
36

t2,3,5 Triruncitruncated 8-simplex (0,0,0,1,1,2,3,3,3) 27720 5040
37

t0,4,5 Pentistericated 8-simplex (0,0,0,1,2,2,2,2,3) 13860 2520
38

t1,4,5 Bisteriruncinated 8-simplex (0,0,0,1,2,2,2,3,3) 30240 5040
39

t0,1,6 Hexitruncated 8-simplex (0,0,1,1,1,1,1,2,3) 12096 1512
40

t0,2,6 Hexicantellated 8-simplex (0,0,1,1,1,1,2,2,3) 34020 3780
41

t1,2,6 Bipentitruncated 8-simplex (0,0,1,1,1,1,2,3,3) 26460 3780
42

t0,3,6 Hexiruncinated 8-simplex (0,0,1,1,1,2,2,2,3) 45360 5040
43

t1,3,6 Bipenticantellated 8-simplex (0,0,1,1,1,2,2,3,3) 60480 7560
44

t0,4,6 Hexistericated 8-simplex (0,0,1,1,2,2,2,2,3) 30240 3780
45

t0,5,6 Hexipentellated 8-simplex (0,0,1,2,2,2,2,2,3) 9072 1512
46

t0,1,7 Heptitruncated 8-simplex (0,1,1,1,1,1,1,2,3) 3276 504
47

t0,2,7 Hepticantellated 8-simplex (0,1,1,1,1,1,2,2,3) 12852 1512
48

t0,3,7 Heptiruncinated 8-simplex (0,1,1,1,1,2,2,2,3) 23940 2520
49

t0,1,2,3 Runcicantitruncated 8-simplex (0,0,0,0,0,1,2,3,4) 12096 3024
50

t0,1,2,4 Stericantitruncated 8-simplex (0,0,0,0,1,1,2,3,4) 45360 7560
51

t0,1,3,4 Steriruncitruncated 8-simplex (0,0,0,0,1,2,2,3,4) 34020 7560
52

t0,2,3,4 Steriruncicantellated 8-simplex (0,0,0,0,1,2,3,3,4) 34020 7560
53

t1,2,3,4 Biruncicantitruncated 8-simplex (0,0,0,0,1,2,3,4,4) 30240 7560
54

t0,1,2,5 Penticantitruncated 8-simplex (0,0,0,1,1,1,2,3,4) 70560 10080
55

t0,1,3,5 Pentiruncitruncated 8-simplex (0,0,0,1,1,2,2,3,4) 98280 15120
56

t0,2,3,5 Pentiruncicantellated 8-simplex (0,0,0,1,1,2,3,3,4) 90720 15120
57

t1,2,3,5 Bistericantitruncated 8-simplex (0,0,0,1,1,2,3,4,4) 83160 15120
58

t0,1,4,5 Pentisteritruncated 8-simplex (0,0,0,1,2,2,2,3,4) 50400 10080
59

t0,2,4,5 Pentistericantellated 8-simplex (0,0,0,1,2,2,3,3,4) 83160 15120
60

t1,2,4,5 Bisteriruncitruncated 8-simplex (0,0,0,1,2,2,3,4,4) 68040 15120
61

t0,3,4,5 Pentisteriruncinated 8-simplex (0,0,0,1,2,3,3,3,4) 50400 10080
62

t1,3,4,5 Bisteriruncicantellated 8-simplex (0,0,0,1,2,3,3,4,4) 75600 15120
63

t2,3,4,5 Triruncicantitruncated 8-simplex (0,0,0,1,2,3,4,4,4) 40320 10080
64

t0,1,2,6 Hexicantitruncated 8-simplex (0,0,1,1,1,1,2,3,4) 52920 7560
65

t0,1,3,6 Hexiruncitruncated 8-simplex (0,0,1,1,1,2,2,3,4) 113400 15120
66

t0,2,3,6 Hexiruncicantellated 8-simplex (0,0,1,1,1,2,3,3,4) 98280 15120
67

t1,2,3,6 Bipenticantitruncated 8-simplex (0,0,1,1,1,2,3,4,4) 90720 15120
68

t0,1,4,6 Hexisteritruncated 8-simplex (0,0,1,1,2,2,2,3,4) 105840 15120
69

t0,2,4,6 Hexistericantellated 8-simplex (0,0,1,1,2,2,3,3,4) 158760 22680
70

t1,2,4,6 Bipentiruncitruncated 8-simplex (0,0,1,1,2,2,3,4,4) 136080 22680
71

t0,3,4,6 Hexisteriruncinated 8-simplex (0,0,1,1,2,3,3,3,4) 90720 15120
72

t1,3,4,6 Bipentiruncicantellated 8-simplex (0,0,1,1,2,3,3,4,4) 136080 22680
73

t0,1,5,6 Hexipentitruncated 8-simplex (0,0,1,2,2,2,2,3,4) 41580 7560
74

t0,2,5,6 Hexipenticantellated 8-simplex (0,0,1,2,2,2,3,3,4) 98280 15120
75

t1,2,5,6 Bipentisteritruncated 8-simplex (0,0,1,2,2,2,3,4,4) 75600 15120
76

t0,3,5,6 Hexipentiruncinated 8-simplex (0,0,1,2,2,3,3,3,4) 98280 15120
77

t0,4,5,6 Hexipentistericated 8-simplex (0,0,1,2,3,3,3,3,4) 41580 7560
78

t0,1,2,7 Hepticantitruncated 8-simplex (0,1,1,1,1,1,2,3,4) 18144 3024
79

t0,1,3,7 Heptiruncitruncated 8-simplex (0,1,1,1,1,2,2,3,4) 56700 7560
80

t0,2,3,7 Heptiruncicantellated 8-simplex (0,1,1,1,1,2,3,3,4) 45360 7560
81

t0,1,4,7 Heptisteritruncated 8-simplex (0,1,1,1,2,2,2,3,4) 80640 10080
82

t0,2,4,7 Heptistericantellated 8-simplex (0,1,1,1,2,2,3,3,4) 113400 15120
83

t0,3,4,7 Heptisteriruncinated 8-simplex (0,1,1,1,2,3,3,3,4) 60480 10080
84

t0,1,5,7 Heptipentitruncated 8-simplex (0,1,1,2,2,2,2,3,4) 56700 7560
85

t0,2,5,7 Heptipenticantellated 8-simplex (0,1,1,2,2,2,3,3,4) 120960 15120
86

t0,1,6,7 Heptihexitruncated 8-simplex (0,1,2,2,2,2,2,3,4) 18144 3024
87

t0,1,2,3,4 Steriruncicantitruncated 8-simplex (0,0,0,0,1,2,3,4,5) 60480 15120
88

t0,1,2,3,5 Pentiruncicantitruncated 8-simplex (0,0,0,1,1,2,3,4,5) 166320 30240
89

t0,1,2,4,5 Pentistericantitruncated 8-simplex (0,0,0,1,2,2,3,4,5) 136080 30240
90

t0,1,3,4,5 Pentisteriruncitruncated 8-simplex (0,0,0,1,2,3,3,4,5) 136080 30240
91

t0,2,3,4,5 Pentisteriruncicantellated 8-simplex (0,0,0,1,2,3,4,4,5) 136080 30240
92

t1,2,3,4,5 Bisteriruncicantitruncated 8-simplex (0,0,0,1,2,3,4,5,5) 120960 30240
93

t0,1,2,3,6 Hexiruncicantitruncated 8-simplex (0,0,1,1,1,2,3,4,5) 181440 30240
94

t0,1,2,4,6 Hexistericantitruncated 8-simplex (0,0,1,1,2,2,3,4,5) 272160 45360
95

t0,1,3,4,6 Hexisteriruncitruncated 8-simplex (0,0,1,1,2,3,3,4,5) 249480 45360
96

t0,2,3,4,6 Hexisteriruncicantellated 8-simplex (0,0,1,1,2,3,4,4,5) 249480 45360
97

t1,2,3,4,6 Bipentiruncicantitruncated 8-simplex (0,0,1,1,2,3,4,5,5) 226800 45360
98

t0,1,2,5,6 Hexipenticantitruncated 8-simplex (0,0,1,2,2,2,3,4,5) 151200 30240
99

t0,1,3,5,6 Hexipentiruncitruncated 8-simplex (0,0,1,2,2,3,3,4,5) 249480 45360
100

t0,2,3,5,6 Hexipentiruncicantellated 8-simplex (0,0,1,2,2,3,4,4,5) 226800 45360
101

t1,2,3,5,6 Bipentistericantitruncated 8-simplex (0,0,1,2,2,3,4,5,5) 204120 45360
102

t0,1,4,5,6 Hexipentisteritruncated 8-simplex (0,0,1,2,3,3,3,4,5) 151200 30240
103

t0,2,4,5,6 Hexipentistericantellated 8-simplex (0,0,1,2,3,3,4,4,5) 249480 45360
104

t0,3,4,5,6 Hexipentisteriruncinated 8-simplex (0,0,1,2,3,4,4,4,5) 151200 30240
105

t0,1,2,3,7 Heptiruncicantitruncated 8-simplex (0,1,1,1,1,2,3,4,5) 83160 15120
106

t0,1,2,4,7 Heptistericantitruncated 8-simplex (0,1,1,1,2,2,3,4,5) 196560 30240
107

t0,1,3,4,7 Heptisteriruncitruncated 8-simplex (0,1,1,1,2,3,3,4,5) 166320 30240
108

t0,2,3,4,7 Heptisteriruncicantellated 8-simplex (0,1,1,1,2,3,4,4,5) 166320 30240
109

t0,1,2,5,7 Heptipenticantitruncated 8-simplex (0,1,1,2,2,2,3,4,5) 196560 30240
110

t0,1,3,5,7 Heptipentiruncitruncated 8-simplex (0,1,1,2,2,3,3,4,5) 294840 45360
111

t0,2,3,5,7 Heptipentiruncicantellated 8-simplex (0,1,1,2,2,3,4,4,5) 272160 45360
112

t0,1,4,5,7 Heptipentisteritruncated 8-simplex (0,1,1,2,3,3,3,4,5) 166320 30240
113

t0,1,2,6,7 Heptihexicantitruncated 8-simplex (0,1,2,2,2,2,3,4,5) 83160 15120
114

t0,1,3,6,7 Heptihexiruncitruncated 8-simplex (0,1,2,2,2,3,3,4,5) 196560 30240
115

t0,1,2,3,4,5 Pentisteriruncicantitruncated 8-simplex (0,0,0,1,2,3,4,5,6) 241920 60480
116

t0,1,2,3,4,6 Hexisteriruncicantitruncated 8-simplex (0,0,1,1,2,3,4,5,6) 453600 90720
117

t0,1,2,3,5,6 Hexipentiruncicantitruncated 8-simplex (0,0,1,2,2,3,4,5,6) 408240 90720
118

t0,1,2,4,5,6 Hexipentistericantitruncated 8-simplex (0,0,1,2,3,3,4,5,6) 408240 90720
119

t0,1,3,4,5,6 Hexipentisteriruncitruncated 8-simplex (0,0,1,2,3,4,4,5,6) 408240 90720
120

t0,2,3,4,5,6 Hexipentisteriruncicantellated 8-simplex (0,0,1,2,3,4,5,5,6) 408240 90720
121

t1,2,3,4,5,6 Bipentisteriruncicantitruncated 8-simplex (0,0,1,2,3,4,5,6,6) 362880 90720
122

t0,1,2,3,4,7 Heptisteriruncicantitruncated 8-simplex (0,1,1,1,2,3,4,5,6) 302400 60480
123

t0,1,2,3,5,7 Heptipentiruncicantitruncated 8-simplex (0,1,1,2,2,3,4,5,6) 498960 90720
124

t0,1,2,4,5,7 Heptipentistericantitruncated 8-simplex (0,1,1,2,3,3,4,5,6) 453600 90720
125

t0,1,3,4,5,7 Heptipentisteriruncitruncated 8-simplex (0,1,1,2,3,4,4,5,6) 453600 90720
126

t0,2,3,4,5,7 Heptipentisteriruncicantellated 8-simplex (0,1,1,2,3,4,5,5,6) 453600 90720
127

t0,1,2,3,6,7 Heptihexiruncicantitruncated 8-simplex (0,1,2,2,2,3,4,5,6) 302400 60480
128

t0,1,2,4,6,7 Heptihexistericantitruncated 8-simplex (0,1,2,2,3,3,4,5,6) 498960 90720
129

t0,1,3,4,6,7 Heptihexisteriruncitruncated 8-simplex (0,1,2,2,3,4,4,5,6) 453600 90720
130

t0,1,2,5,6,7 Heptihexipenticantitruncated 8-simplex (0,1,2,3,3,3,4,5,6) 302400 60480
131

t0,1,2,3,4,5,6 Hexipentisteriruncicantitruncated 8-simplex (0,0,1,2,3,4,5,6,7) 725760 181440
132

t0,1,2,3,4,5,7 Heptipentisteriruncicantitruncated 8-simplex (0,1,1,2,3,4,5,6,7) 816480 181440
133

t0,1,2,3,4,6,7 Heptihexisteriruncicantitruncated 8-simplex (0,1,2,2,3,4,5,6,7) 816480 181440
134

t0,1,2,3,5,6,7 Heptihexipentiruncicantitruncated 8-simplex (0,1,2,3,3,4,5,6,7) 816480 181440
135

t0,1,2,3,4,5,6,7 Omnitruncated 8-simplex (0,1,2,3,4,5,6,7,8) 1451520 362880

The B8 family

The B8 family has symmetry of order 10321920 (8 factorial x 28). There are 255 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

See also a list of B8 polytopes for symmetric Coxeter plane graphs of these polytopes.

# Coxeter-Dynkin diagram Schläfli
symbol
Name Element counts
7 6 5 4 3 2 1 0
1 t0{36,4}8-orthoplex
Diacosipentacontahexazetton (ek)
256102417921792112044811216
2 t1{36,4}Rectified 8-orthoplex
Rectified diacosipentacontahexazetton (rek)
27230728960125441008049281344112
3 t2{36,4}Birectified 8-orthoplex
Birectified diacosipentacontahexazetton (bark)
2723184161283404836960224006720448
4 t3{36,4}Trirectified 8-orthoplex
Trirectified diacosipentacontahexazetton (tark)
272318416576483847168053760179201120
5 t3{4,36}Trirectified 8-cube
Trirectified octeract (tro)
272318416576477128064071680268801792
6 t2{4,36}Birectified 8-cube
Birectified octeract (bro)
272318414784369605555250176215041792
7 t1{4,36}Rectified 8-cube
Rectified octeract (recto)
2722160761615456197121612871681024
8 t0{4,36}8-cube
Octeract (octo)
161124481120179217921024256
9 t0,1{36,4}Truncated 8-orthoplex
Truncated diacosipentacontahexazetton (tek)
1456224
10 t0,2{36,4}Cantellated 8-orthoplex
Small rhombated diacosipentacontahexazetton (srek)
147841344
11 t1,2{36,4}Bitruncated 8-orthoplex
Bitruncated diacosipentacontahexazetton (batek)
80641344
12 t0,3{36,4}Runcinated 8-orthoplex
Small prismated diacosipentacontahexazetton (spek)
604804480
13 t1,3{36,4}Bicantellated 8-orthoplex
Small birhombated diacosipentacontahexazetton (sabork)
672006720
14 t2,3{36,4}Tritruncated 8-orthoplex
Tritruncated diacosipentacontahexazetton (tatek)
246404480
15 t0,4{36,4}Stericated 8-orthoplex
Small cellated diacosipentacontahexazetton (scak)
1254408960
16 t1,4{36,4}Biruncinated 8-orthoplex
Small biprismated diacosipentacontahexazetton (sabpek)
21504017920
17 t2,4{36,4}Tricantellated 8-orthoplex
Small trirhombated diacosipentacontahexazetton (satrek)
16128017920
18 t3,4{4,36}Quadritruncated 8-cube
Octeractidiacosipentacontahexazetton (oke)
448008960
19 t0,5{36,4}Pentellated 8-orthoplex
Small terated diacosipentacontahexazetton (setek)
13440010752
20 t1,5{36,4}Bistericated 8-orthoplex
Small bicellated diacosipentacontahexazetton (sibcak)
32256026880
21 t2,5{4,36}Triruncinated 8-cube
Small triprismato-octeractidiacosipentacontahexazetton (sitpoke)
37632035840
22 t2,4{4,36}Tricantellated 8-cube
Small trirhombated octeract (satro)
21504026880
23 t2,3{4,36}Tritruncated 8-cube
Tritruncated octeract (tato)
4838410752
24 t0,6{36,4}Hexicated 8-orthoplex
Small petated diacosipentacontahexazetton (supek)
645127168
25 t1,6{4,36}Bipentellated 8-cube
Small biteri-octeractidiacosipentacontahexazetton (sabtoke)
21504021504
26 t1,5{4,36}Bistericated 8-cube
Small bicellated octeract (sobco)
35840035840
27 t1,4{4,36}Biruncinated 8-cube
Small biprismated octeract (sabepo)
32256035840
28 t1,3{4,36}Bicantellated 8-cube
Small birhombated octeract (subro)
15052821504
29 t1,2{4,36}Bitruncated 8-cube
Bitruncated octeract (bato)
286727168
30 t0,7{4,36}Heptellated 8-cube
Small exi-octeractidiacosipentacontahexazetton (saxoke)
143362048
31 t0,6{4,36}Hexicated 8-cube
Small petated octeract (supo)
645127168
32 t0,5{4,36}Pentellated 8-cube
Small terated octeract (soto)
14336014336
33 t0,4{4,36}Stericated 8-cube
Small cellated octeract (soco)
17920017920
34 t0,3{4,36}Runcinated 8-cube
Small prismated octeract (sopo)
12902414336
35 t0,2{4,36}Cantellated 8-cube
Small rhombated octeract (soro)
501767168
36 t0,1{4,36}Truncated 8-cube
Truncated octeract (tocto)
81922048
37 t0,1,2{36,4}Cantitruncated 8-orthoplex
Great rhombated diacosipentacontahexazetton
161282688
38 t0,1,3{36,4}Runcitruncated 8-orthoplex
Prismatotruncated diacosipentacontahexazetton
12768013440
39 t0,2,3{36,4}Runcicantellated 8-orthoplex
Prismatorhombated diacosipentacontahexazetton
8064013440
40 t1,2,3{36,4}Bicantitruncated 8-orthoplex
Great birhombated diacosipentacontahexazetton
7392013440
41 t0,1,4{36,4}Steritruncated 8-orthoplex
Cellitruncated diacosipentacontahexazetton
39424035840
42 t0,2,4{36,4}Stericantellated 8-orthoplex
Cellirhombated diacosipentacontahexazetton
48384053760
43 t1,2,4{36,4}Biruncitruncated 8-orthoplex
Biprismatotruncated diacosipentacontahexazetton
43008053760
44 t0,3,4{36,4}Steriruncinated 8-orthoplex
Celliprismated diacosipentacontahexazetton
21504035840
45 t1,3,4{36,4}Biruncicantellated 8-orthoplex
Biprismatorhombated diacosipentacontahexazetton
32256053760
46 t2,3,4{36,4}Tricantitruncated 8-orthoplex
Great trirhombated diacosipentacontahexazetton
17920035840
47 t0,1,5{36,4}Pentitruncated 8-orthoplex
Teritruncated diacosipentacontahexazetton
56448053760
48 t0,2,5{36,4}Penticantellated 8-orthoplex
Terirhombated diacosipentacontahexazetton
1075200107520
49 t1,2,5{36,4}Bisteritruncated 8-orthoplex
Bicellitruncated diacosipentacontahexazetton
913920107520
50 t0,3,5{36,4}Pentiruncinated 8-orthoplex
Teriprismated diacosipentacontahexazetton
913920107520
51 t1,3,5{36,4}Bistericantellated 8-orthoplex
Bicellirhombated diacosipentacontahexazetton
1290240161280
52 t2,3,5{36,4}Triruncitruncated 8-orthoplex
Triprismatotruncated diacosipentacontahexazetton
698880107520
53 t0,4,5{36,4}Pentistericated 8-orthoplex
Tericellated diacosipentacontahexazetton
32256053760
54 t1,4,5{36,4}Bisteriruncinated 8-orthoplex
Bicelliprismated diacosipentacontahexazetton
698880107520
55 t2,3,5{4,36}Triruncitruncated 8-cube
Triprismatotruncated octeract
645120107520
56 t2,3,4{4,36}Tricantitruncated 8-cube
Great trirhombated octeract
24192053760
57 t0,1,6{36,4}Hexitruncated 8-orthoplex
Petitruncated diacosipentacontahexazetton
34406443008
58 t0,2,6{36,4}Hexicantellated 8-orthoplex
Petirhombated diacosipentacontahexazetton
967680107520
59 t1,2,6{36,4}Bipentitruncated 8-orthoplex
Biteritruncated diacosipentacontahexazetton
752640107520
60 t0,3,6{36,4}Hexiruncinated 8-orthoplex
Petiprismated diacosipentacontahexazetton
1290240143360
61 t1,3,6{36,4}Bipenticantellated 8-orthoplex
Biterirhombated diacosipentacontahexazetton
1720320215040
62 t1,4,5{4,36}Bisteriruncinated 8-cube
Bicelliprismated octeract
860160143360
63 t0,4,6{36,4}Hexistericated 8-orthoplex
Peticellated diacosipentacontahexazetton
860160107520
64 t1,3,6{4,36}Bipenticantellated 8-cube
Biterirhombated octeract
1720320215040
65 t1,3,5{4,36}Bistericantellated 8-cube
Bicellirhombated octeract
1505280215040
66 t1,3,4{4,36}Biruncicantellated 8-cube
Biprismatorhombated octeract
537600107520
67 t0,5,6{36,4}Hexipentellated 8-orthoplex
Petiterated diacosipentacontahexazetton
25804843008
68 t1,2,6{4,36}Bipentitruncated 8-cube
Biteritruncated octeract
752640107520
69 t1,2,5{4,36}Bisteritruncated 8-cube
Bicellitruncated octeract
1003520143360
70 t1,2,4{4,36}Biruncitruncated 8-cube
Biprismatotruncated octeract
645120107520
71 t1,2,3{4,36}Bicantitruncated 8-cube
Great birhombated octeract
17203243008
72 t0,1,7{36,4}Heptitruncated 8-orthoplex
Exitruncated diacosipentacontahexazetton
9318414336
73 t0,2,7{36,4}Hepticantellated 8-orthoplex
Exirhombated diacosipentacontahexazetton
36556843008
74 t0,5,6{4,36}Hexipentellated 8-cube
Petiterated octeract
25804843008
75 t0,3,7{36,4}Heptiruncinated 8-orthoplex
Exiprismated diacosipentacontahexazetton
68096071680
76 t0,4,6{4,36}Hexistericated 8-cube
Peticellated octeract
860160107520
77 t0,4,5{4,36}Pentistericated 8-cube
Tericellated octeract
39424071680
78 t0,3,7{4,36}Heptiruncinated 8-cube
Exiprismated octeract
68096071680
79 t0,3,6{4,36}Hexiruncinated 8-cube
Petiprismated octeract
1290240143360
80 t0,3,5{4,36}Pentiruncinated 8-cube
Teriprismated octeract
1075200143360
81 t0,3,4{4,36}Steriruncinated 8-cube
Celliprismated octeract
35840071680
82 t0,2,7{4,36}Hepticantellated 8-cube
Exirhombated octeract
36556843008
83 t0,2,6{4,36}Hexicantellated 8-cube
Petirhombated octeract
967680107520
84 t0,2,5{4,36}Penticantellated 8-cube
Terirhombated octeract
1218560143360
85 t0,2,4{4,36}Stericantellated 8-cube
Cellirhombated octeract
752640107520
86 t0,2,3{4,36}Runcicantellated 8-cube
Prismatorhombated octeract
19353643008
87 t0,1,7{4,36}Heptitruncated 8-cube
Exitruncated octeract
9318414336
88 t0,1,6{4,36}Hexitruncated 8-cube
Petitruncated octeract
34406443008
89 t0,1,5{4,36}Pentitruncated 8-cube
Teritruncated octeract
60928071680
90 t0,1,4{4,36}Steritruncated 8-cube
Cellitruncated octeract
57344071680
91 t0,1,3{4,36}Runcitruncated 8-cube
Prismatotruncated octeract
27955243008
92 t0,1,2{4,36}Cantitruncated 8-cube
Great rhombated octeract
5734414336
93 t0,1,2,3{36,4}Runcicantitruncated 8-orthoplex
Great prismated diacosipentacontahexazetton
14784026880
94 t0,1,2,4{36,4}Stericantitruncated 8-orthoplex
Celligreatorhombated diacosipentacontahexazetton
860160107520
95 t0,1,3,4{36,4}Steriruncitruncated 8-orthoplex
Celliprismatotruncated diacosipentacontahexazetton
591360107520
96 t0,2,3,4{36,4}Steriruncicantellated 8-orthoplex
Celliprismatorhombated diacosipentacontahexazetton
591360107520
97 t1,2,3,4{36,4}Biruncicantitruncated 8-orthoplex
Great biprismated diacosipentacontahexazetton
537600107520
98 t0,1,2,5{36,4}Penticantitruncated 8-orthoplex
Terigreatorhombated diacosipentacontahexazetton
1827840215040
99 t0,1,3,5{36,4}Pentiruncitruncated 8-orthoplex
Teriprismatotruncated diacosipentacontahexazetton
2419200322560
100 t0,2,3,5{36,4}Pentiruncicantellated 8-orthoplex
Teriprismatorhombated diacosipentacontahexazetton
2257920322560
101 t1,2,3,5{36,4}Bistericantitruncated 8-orthoplex
Bicelligreatorhombated diacosipentacontahexazetton
2096640322560
102 t0,1,4,5{36,4}Pentisteritruncated 8-orthoplex
Tericellitruncated diacosipentacontahexazetton
1182720215040
103 t0,2,4,5{36,4}Pentistericantellated 8-orthoplex
Tericellirhombated diacosipentacontahexazetton
1935360322560
104 t1,2,4,5{36,4}Bisteriruncitruncated 8-orthoplex
Bicelliprismatotruncated diacosipentacontahexazetton
1612800322560
105 t0,3,4,5{36,4}Pentisteriruncinated 8-orthoplex
Tericelliprismated diacosipentacontahexazetton
1182720215040
106 t1,3,4,5{36,4}Bisteriruncicantellated 8-orthoplex
Bicelliprismatorhombated diacosipentacontahexazetton
1774080322560
107 t2,3,4,5{4,36}Triruncicantitruncated 8-cube
Great triprismato-octeractidiacosipentacontahexazetton
967680215040
108 t0,1,2,6{36,4}Hexicantitruncated 8-orthoplex
Petigreatorhombated diacosipentacontahexazetton
1505280215040
109 t0,1,3,6{36,4}Hexiruncitruncated 8-orthoplex
Petiprismatotruncated diacosipentacontahexazetton
3225600430080
110 t0,2,3,6{36,4}Hexiruncicantellated 8-orthoplex
Petiprismatorhombated diacosipentacontahexazetton
2795520430080
111 t1,2,3,6{36,4}Bipenticantitruncated 8-orthoplex
Biterigreatorhombated diacosipentacontahexazetton
2580480430080
112 t0,1,4,6{36,4}Hexisteritruncated 8-orthoplex
Peticellitruncated diacosipentacontahexazetton
3010560430080
113 t0,2,4,6{36,4}Hexistericantellated 8-orthoplex
Peticellirhombated diacosipentacontahexazetton
4515840645120
114 t1,2,4,6{36,4}Bipentiruncitruncated 8-orthoplex
Biteriprismatotruncated diacosipentacontahexazetton
3870720645120
115 t0,3,4,6{36,4}Hexisteriruncinated 8-orthoplex
Peticelliprismated diacosipentacontahexazetton
2580480430080
116 t1,3,4,6{4,36}Bipentiruncicantellated 8-cube
Biteriprismatorhombi-octeractidiacosipentacontahexazetton
3870720645120
117 t1,3,4,5{4,36}Bisteriruncicantellated 8-cube
Bicelliprismatorhombated octeract
2150400430080
118 t0,1,5,6{36,4}Hexipentitruncated 8-orthoplex
Petiteritruncated diacosipentacontahexazetton
1182720215040
119 t0,2,5,6{36,4}Hexipenticantellated 8-orthoplex
Petiterirhombated diacosipentacontahexazetton
2795520430080
120 t1,2,5,6{4,36}Bipentisteritruncated 8-cube
Bitericellitrunki-octeractidiacosipentacontahexazetton
2150400430080
121 t0,3,5,6{36,4}Hexipentiruncinated 8-orthoplex
Petiteriprismated diacosipentacontahexazetton
2795520430080
122 t1,2,4,6{4,36}Bipentiruncitruncated 8-cube
Biteriprismatotruncated octeract
3870720645120
123 t1,2,4,5{4,36}Bisteriruncitruncated 8-cube
Bicelliprismatotruncated octeract
1935360430080
124 t0,4,5,6{36,4}Hexipentistericated 8-orthoplex
Petitericellated diacosipentacontahexazetton
1182720215040
125 t1,2,3,6{4,36}Bipenticantitruncated 8-cube
Biterigreatorhombated octeract
2580480430080
126 t1,2,3,5{4,36}Bistericantitruncated 8-cube
Bicelligreatorhombated octeract
2365440430080
127 t1,2,3,4{4,36}Biruncicantitruncated 8-cube
Great biprismated octeract
860160215040
128 t0,1,2,7{36,4}Hepticantitruncated 8-orthoplex
Exigreatorhombated diacosipentacontahexazetton
51609686016
129 t0,1,3,7{36,4}Heptiruncitruncated 8-orthoplex
Exiprismatotruncated diacosipentacontahexazetton
1612800215040
130 t0,2,3,7{36,4}Heptiruncicantellated 8-orthoplex
Exiprismatorhombated diacosipentacontahexazetton
1290240215040
131 t0,4,5,6{4,36}Hexipentistericated 8-cube
Petitericellated octeract
1182720215040
132 t0,1,4,7{36,4}Heptisteritruncated 8-orthoplex
Exicellitruncated diacosipentacontahexazetton
2293760286720
133 t0,2,4,7{36,4}Heptistericantellated 8-orthoplex
Exicellirhombated diacosipentacontahexazetton
3225600430080
134 t0,3,5,6{4,36}Hexipentiruncinated 8-cube
Petiteriprismated octeract
2795520430080
135 t0,3,4,7{4,36}Heptisteriruncinated 8-cube
Exicelliprismato-octeractidiacosipentacontahexazetton
1720320286720
136 t0,3,4,6{4,36}Hexisteriruncinated 8-cube
Peticelliprismated octeract
2580480430080
137 t0,3,4,5{4,36}Pentisteriruncinated 8-cube
Tericelliprismated octeract
1433600286720
138 t0,1,5,7{36,4}Heptipentitruncated 8-orthoplex
Exiteritruncated diacosipentacontahexazetton
1612800215040
139 t0,2,5,7{4,36}Heptipenticantellated 8-cube
Exiterirhombi-octeractidiacosipentacontahexazetton
3440640430080
140 t0,2,5,6{4,36}Hexipenticantellated 8-cube
Petiterirhombated octeract
2795520430080
141 t0,2,4,7{4,36}Heptistericantellated 8-cube
Exicellirhombated octeract
3225600430080
142 t0,2,4,6{4,36}Hexistericantellated 8-cube
Peticellirhombated octeract
4515840645120
143 t0,2,4,5{4,36}Pentistericantellated 8-cube
Tericellirhombated octeract
2365440430080
144 t0,2,3,7{4,36}Heptiruncicantellated 8-cube
Exiprismatorhombated octeract
1290240215040
145 t0,2,3,6{4,36}Hexiruncicantellated 8-cube
Petiprismatorhombated octeract
2795520430080
146 t0,2,3,5{4,36}Pentiruncicantellated 8-cube
Teriprismatorhombated octeract
2580480430080
147 t0,2,3,4{4,36}Steriruncicantellated 8-cube
Celliprismatorhombated octeract
967680215040
148 t0,1,6,7{4,36}Heptihexitruncated 8-cube
Exipetitrunki-octeractidiacosipentacontahexazetton
51609686016
149 t0,1,5,7{4,36}Heptipentitruncated 8-cube
Exiteritruncated octeract
1612800215040
150 t0,1,5,6{4,36}Hexipentitruncated 8-cube
Petiteritruncated octeract
1182720215040
151 t0,1,4,7{4,36}Heptisteritruncated 8-cube
Exicellitruncated octeract
2293760286720
152 t0,1,4,6{4,36}Hexisteritruncated 8-cube
Peticellitruncated octeract
3010560430080
153 t0,1,4,5{4,36}Pentisteritruncated 8-cube
Tericellitruncated octeract
1433600286720
154 t0,1,3,7{4,36}Heptiruncitruncated 8-cube
Exiprismatotruncated octeract
1612800215040
155 t0,1,3,6{4,36}Hexiruncitruncated 8-cube
Petiprismatotruncated octeract
3225600430080
156 t0,1,3,5{4,36}Pentiruncitruncated 8-cube
Teriprismatotruncated octeract
2795520430080
157 t0,1,3,4{4,36}Steriruncitruncated 8-cube
Celliprismatotruncated octeract
967680215040
158 t0,1,2,7{4,36}Hepticantitruncated 8-cube
Exigreatorhombated octeract
51609686016
159 t0,1,2,6{4,36}Hexicantitruncated 8-cube
Petigreatorhombated octeract
1505280215040
160 t0,1,2,5{4,36}Penticantitruncated 8-cube
Terigreatorhombated octeract
2007040286720
161 t0,1,2,4{4,36}Stericantitruncated 8-cube
Celligreatorhombated octeract
1290240215040
162 t0,1,2,3{4,36}Runcicantitruncated 8-cube
Great prismated octeract
34406486016
163 t0,1,2,3,4{36,4}Steriruncicantitruncated 8-orthoplex
Great cellated diacosipentacontahexazetton
1075200215040
164 t0,1,2,3,5{36,4}Pentiruncicantitruncated 8-orthoplex
Terigreatoprismated diacosipentacontahexazetton
4193280645120
165 t0,1,2,4,5{36,4}Pentistericantitruncated 8-orthoplex
Tericelligreatorhombated diacosipentacontahexazetton
3225600645120
166 t0,1,3,4,5{36,4}Pentisteriruncitruncated 8-orthoplex
Tericelliprismatotruncated diacosipentacontahexazetton
3225600645120
167 t0,2,3,4,5{36,4}Pentisteriruncicantellated 8-orthoplex
Tericelliprismatorhombated diacosipentacontahexazetton
3225600645120
168 t1,2,3,4,5{36,4}Bisteriruncicantitruncated 8-orthoplex
Great bicellated diacosipentacontahexazetton
2903040645120
169 t0,1,2,3,6{36,4}Hexiruncicantitruncated 8-orthoplex
Petigreatoprismated diacosipentacontahexazetton
5160960860160
170 t0,1,2,4,6{36,4}Hexistericantitruncated 8-orthoplex
Peticelligreatorhombated diacosipentacontahexazetton
77414401290240
171 t0,1,3,4,6{36,4}Hexisteriruncitruncated 8-orthoplex
Peticelliprismatotruncated diacosipentacontahexazetton
70963201290240
172 t0,2,3,4,6{36,4}Hexisteriruncicantellated 8-orthoplex
Peticelliprismatorhombated diacosipentacontahexazetton
70963201290240
173 t1,2,3,4,6{36,4}Bipentiruncicantitruncated 8-orthoplex
Biterigreatoprismated diacosipentacontahexazetton
64512001290240
174 t0,1,2,5,6{36,4}Hexipenticantitruncated 8-orthoplex
Petiterigreatorhombated diacosipentacontahexazetton
4300800860160
175 t0,1,3,5,6{36,4}Hexipentiruncitruncated 8-orthoplex
Petiteriprismatotruncated diacosipentacontahexazetton
70963201290240
176 t0,2,3,5,6{36,4}Hexipentiruncicantellated 8-orthoplex
Petiteriprismatorhombated diacosipentacontahexazetton
64512001290240
177 t1,2,3,5,6{36,4}Bipentistericantitruncated 8-orthoplex
Bitericelligreatorhombated diacosipentacontahexazetton
58060801290240
178 t0,1,4,5,6{36,4}Hexipentisteritruncated 8-orthoplex
Petitericellitruncated diacosipentacontahexazetton
4300800860160
179 t0,2,4,5,6{36,4}Hexipentistericantellated 8-orthoplex
Petitericellirhombated diacosipentacontahexazetton
70963201290240
180 t1,2,3,5,6{4,36}Bipentistericantitruncated 8-cube
Bitericelligreatorhombated octeract
58060801290240
181 t0,3,4,5,6{36,4}Hexipentisteriruncinated 8-orthoplex
Petitericelliprismated diacosipentacontahexazetton
4300800860160
182 t1,2,3,4,6{4,36}Bipentiruncicantitruncated 8-cube
Biterigreatoprismated octeract
64512001290240
183 t1,2,3,4,5{4,36}Bisteriruncicantitruncated 8-cube
Great bicellated octeract
3440640860160
184 t0,1,2,3,7{36,4}Heptiruncicantitruncated 8-orthoplex
Exigreatoprismated diacosipentacontahexazetton
2365440430080
185 t0,1,2,4,7{36,4}Heptistericantitruncated 8-orthoplex
Exicelligreatorhombated diacosipentacontahexazetton
5591040860160
186 t0,1,3,4,7{36,4}Heptisteriruncitruncated 8-orthoplex
Exicelliprismatotruncated diacosipentacontahexazetton
4730880860160
187 t0,2,3,4,7{36,4}Heptisteriruncicantellated 8-orthoplex
Exicelliprismatorhombated diacosipentacontahexazetton
4730880860160
188 t0,3,4,5,6{4,36}Hexipentisteriruncinated 8-cube
Petitericelliprismated octeract
4300800860160
189 t0,1,2,5,7{36,4}Heptipenticantitruncated 8-orthoplex
Exiterigreatorhombated diacosipentacontahexazetton
5591040860160
190 t0,1,3,5,7{36,4}Heptipentiruncitruncated 8-orthoplex
Exiteriprismatotruncated diacosipentacontahexazetton
83865601290240
191 t0,2,3,5,7{36,4}Heptipentiruncicantellated 8-orthoplex
Exiteriprismatorhombated diacosipentacontahexazetton
77414401290240
192 t0,2,4,5,6{4,36}Hexipentistericantellated 8-cube
Petitericellirhombated octeract
70963201290240
193 t0,1,4,5,7{36,4}Heptipentisteritruncated 8-orthoplex
Exitericellitruncated diacosipentacontahexazetton
4730880860160
194 t0,2,3,5,7{4,36}Heptipentiruncicantellated 8-cube
Exiteriprismatorhombated octeract
77414401290240
195 t0,2,3,5,6{4,36}Hexipentiruncicantellated 8-cube
Petiteriprismatorhombated octeract
64512001290240
196 t0,2,3,4,7{4,36}Heptisteriruncicantellated 8-cube
Exicelliprismatorhombated octeract
4730880860160
197 t0,2,3,4,6{4,36}Hexisteriruncicantellated 8-cube
Peticelliprismatorhombated octeract
70963201290240
198 t0,2,3,4,5{4,36}Pentisteriruncicantellated 8-cube
Tericelliprismatorhombated octeract
3870720860160
199 t0,1,2,6,7{36,4}Heptihexicantitruncated 8-orthoplex
Exipetigreatorhombated diacosipentacontahexazetton
2365440430080
200 t0,1,3,6,7{36,4}Heptihexiruncitruncated 8-orthoplex
Exipetiprismatotruncated diacosipentacontahexazetton
5591040860160
201 t0,1,4,5,7{4,36}Heptipentisteritruncated 8-cube
Exitericellitruncated octeract
4730880860160
202 t0,1,4,5,6{4,36}Hexipentisteritruncated 8-cube
Petitericellitruncated octeract
4300800860160
203 t0,1,3,6,7{4,36}Heptihexiruncitruncated 8-cube
Exipetiprismatotruncated octeract
5591040860160
204 t0,1,3,5,7{4,36}Heptipentiruncitruncated 8-cube
Exiteriprismatotruncated octeract
83865601290240
205 t0,1,3,5,6{4,36}Hexipentiruncitruncated 8-cube
Petiteriprismatotruncated octeract
70963201290240
206 t0,1,3,4,7{4,36}Heptisteriruncitruncated 8-cube
Exicelliprismatotruncated octeract
4730880860160
207 t0,1,3,4,6{4,36}Hexisteriruncitruncated 8-cube
Peticelliprismatotruncated octeract
70963201290240
208 t0,1,3,4,5{4,36}Pentisteriruncitruncated 8-cube
Tericelliprismatotruncated octeract
3870720860160
209 t0,1,2,6,7{4,36}Heptihexicantitruncated 8-cube
Exipetigreatorhombated octeract
2365440430080
210 t0,1,2,5,7{4,36}Heptipenticantitruncated 8-cube
Exiterigreatorhombated octeract
5591040860160
211 t0,1,2,5,6{4,36}Hexipenticantitruncated 8-cube
Petiterigreatorhombated octeract
4300800860160
212 t0,1,2,4,7{4,36}Heptistericantitruncated 8-cube
Exicelligreatorhombated octeract
5591040860160
213 t0,1,2,4,6{4,36}Hexistericantitruncated 8-cube
Peticelligreatorhombated octeract
77414401290240
214 t0,1,2,4,5{4,36}Pentistericantitruncated 8-cube
Tericelligreatorhombated octeract
3870720860160
215 t0,1,2,3,7{4,36}Heptiruncicantitruncated 8-cube
Exigreatoprismated octeract
2365440430080
216 t0,1,2,3,6{4,36}Hexiruncicantitruncated 8-cube
Petigreatoprismated octeract
5160960860160
217 t0,1,2,3,5{4,36}Pentiruncicantitruncated 8-cube
Terigreatoprismated octeract
4730880860160
218 t0,1,2,3,4{4,36}Steriruncicantitruncated 8-cube
Great cellated octeract
1720320430080
219 t0,1,2,3,4,5{36,4}Pentisteriruncicantitruncated 8-orthoplex
Great terated diacosipentacontahexazetton
58060801290240
220 t0,1,2,3,4,6{36,4}Hexisteriruncicantitruncated 8-orthoplex
Petigreatocellated diacosipentacontahexazetton
129024002580480
221 t0,1,2,3,5,6{36,4}Hexipentiruncicantitruncated 8-orthoplex
Petiterigreatoprismated diacosipentacontahexazetton
116121602580480
222 t0,1,2,4,5,6{36,4}Hexipentistericantitruncated 8-orthoplex
Petitericelligreatorhombated diacosipentacontahexazetton
116121602580480
223 t0,1,3,4,5,6{36,4}Hexipentisteriruncitruncated 8-orthoplex
Petitericelliprismatotruncated diacosipentacontahexazetton
116121602580480
224 t0,2,3,4,5,6{36,4}Hexipentisteriruncicantellated 8-orthoplex
Petitericelliprismatorhombated diacosipentacontahexazetton
116121602580480
225 t1,2,3,4,5,6{4,36}Bipentisteriruncicantitruncated 8-cube
Great biteri-octeractidiacosipentacontahexazetton
103219202580480
226 t0,1,2,3,4,7{36,4}Heptisteriruncicantitruncated 8-orthoplex
Exigreatocellated diacosipentacontahexazetton
86016001720320
227 t0,1,2,3,5,7{36,4}Heptipentiruncicantitruncated 8-orthoplex
Exiterigreatoprismated diacosipentacontahexazetton
141926402580480
228 t0,1,2,4,5,7{36,4}Heptipentistericantitruncated 8-orthoplex
Exitericelligreatorhombated diacosipentacontahexazetton
129024002580480
229 t0,1,3,4,5,7{36,4}Heptipentisteriruncitruncated 8-orthoplex
Exitericelliprismatotruncated diacosipentacontahexazetton
129024002580480
230 t0,2,3,4,5,7{4,36}Heptipentisteriruncicantellated 8-cube
Exitericelliprismatorhombi-octeractidiacosipentacontahexazetton
129024002580480
231 t0,2,3,4,5,6{4,36}Hexipentisteriruncicantellated 8-cube
Petitericelliprismatorhombated octeract
116121602580480
232 t0,1,2,3,6,7{36,4}Heptihexiruncicantitruncated 8-orthoplex
Exipetigreatoprismated diacosipentacontahexazetton
86016001720320
233 t0,1,2,4,6,7{36,4}Heptihexistericantitruncated 8-orthoplex
Exipeticelligreatorhombated diacosipentacontahexazetton
141926402580480
234 t0,1,3,4,6,7{4,36}Heptihexisteriruncitruncated 8-cube
Exipeticelliprismatotrunki-octeractidiacosipentacontahexazetton
129024002580480
235 t0,1,3,4,5,7{4,36}Heptipentisteriruncitruncated 8-cube
Exitericelliprismatotruncated octeract
129024002580480
236 t0,1,3,4,5,6{4,36}Hexipentisteriruncitruncated 8-cube
Petitericelliprismatotruncated octeract
116121602580480
237 t0,1,2,5,6,7{4,36}Heptihexipenticantitruncated 8-cube
Exipetiterigreatorhombi-octeractidiacosipentacontahexazetton
86016001720320
238 t0,1,2,4,6,7{4,36}Heptihexistericantitruncated 8-cube
Exipeticelligreatorhombated octeract
141926402580480
239 t0,1,2,4,5,7{4,36}Heptipentistericantitruncated 8-cube
Exitericelligreatorhombated octeract
129024002580480
240 t0,1,2,4,5,6{4,36}Hexipentistericantitruncated 8-cube
Petitericelligreatorhombated octeract
116121602580480
241 t0,1,2,3,6,7{4,36}Heptihexiruncicantitruncated 8-cube
Exipetigreatoprismated octeract
86016001720320
242 t0,1,2,3,5,7{4,36}Heptipentiruncicantitruncated 8-cube
Exiterigreatoprismated octeract
141926402580480
243 t0,1,2,3,5,6{4,36}Hexipentiruncicantitruncated 8-cube
Petiterigreatoprismated octeract
116121602580480
244 t0,1,2,3,4,7{4,36}Heptisteriruncicantitruncated 8-cube
Exigreatocellated octeract
86016001720320
245 t0,1,2,3,4,6{4,36}Hexisteriruncicantitruncated 8-cube
Petigreatocellated octeract
129024002580480
246 t0,1,2,3,4,5{4,36}Pentisteriruncicantitruncated 8-cube
Great terated octeract
68812801720320
247 t0,1,2,3,4,5,6{36,4}Hexipentisteriruncicantitruncated 8-orthoplex
Great petated diacosipentacontahexazetton
206438405160960
248 t0,1,2,3,4,5,7{36,4}Heptipentisteriruncicantitruncated 8-orthoplex
Exigreatoterated diacosipentacontahexazetton
232243205160960
249 t0,1,2,3,4,6,7{36,4}Heptihexisteriruncicantitruncated 8-orthoplex
Exipetigreatocellated diacosipentacontahexazetton
232243205160960
250 t0,1,2,3,5,6,7{36,4}Heptihexipentiruncicantitruncated 8-orthoplex
Exipetiterigreatoprismated diacosipentacontahexazetton
232243205160960
251 t0,1,2,3,5,6,7{4,36}Heptihexipentiruncicantitruncated 8-cube
Exipetiterigreatoprismated octeract
232243205160960
252 t0,1,2,3,4,6,7{4,36}Heptihexisteriruncicantitruncated 8-cube
Exipetigreatocellated octeract
232243205160960
253 t0,1,2,3,4,5,7{4,36}Heptipentisteriruncicantitruncated 8-cube
Exigreatoterated octeract
232243205160960
254 t0,1,2,3,4,5,6{4,36}Hexipentisteriruncicantitruncated 8-cube
Great petated octeract
206438405160960
255 t0,1,2,3,4,5,6,7{4,36}Omnitruncated 8-cube
Great exi-octeractidiacosipentacontahexazetton
4128768010321920

The D8 family

The D8 family has symmetry of order 5,160,960 (8 factorial x 27).

This family has 191 Wythoffian uniform polytopes, from 3x64-1 permutations of the D8 Coxeter-Dynkin diagram with one or more rings. 127 (2x64-1) are repeated from the B8 family and 64 are unique to this family, all listed below.

See list of D8 polytopes for Coxeter plane graphs of these polytopes.

# Coxeter-Dynkin diagram
Name
Base point
(Alternately signed)
Element counts Circumrad
76543210
1
8-demicube
(1,1,1,1,1,1,1,1)14411364032828810752716817921281.0000000
2
Truncated 8-demicube
(1,1,3,3,3,3,3,3) 2329635842.6457512
3 (1,1,1,3,3,3,3,3) 6451271682.4494896
4 (1,1,1,1,3,3,3,3) 9856089602.2360678
5 (1,1,1,1,1,3,3,3) 8960071681.9999999
6 (1,1,1,1,1,1,3,3) 4838435841.7320508
7 (1,1,1,1,1,1,1,3) 1433610241.4142135
8 (1,1,3,5,5,5,5,5) 86016215044.1231055
9 (1,1,3,3,5,5,5,5) 349440537603.8729835
10 (1,1,1,3,5,5,5,5) 179200358403.7416575
11 (1,1,3,3,3,5,5,5) 573440716803.6055512
12 (1,1,1,3,3,5,5,5) 537600716803.4641016
13 (1,1,1,1,3,5,5,5) 232960358403.3166249
14 (1,1,3,3,3,3,5,5) 456960537603.3166249
15 (1,1,1,3,3,3,5,5) 645120716803.1622777
16 (1,1,1,1,3,3,5,5) 483840537603
17 (1,1,1,1,1,3,5,5) 182784215042.8284271
18 (1,1,3,3,3,3,3,5) 172032215043
19 (1,1,1,3,3,3,3,5) 340480358402.8284271
20 (1,1,1,1,3,3,3,5) 376320358402.6457512
21 (1,1,1,1,1,3,3,5) 236544215042.4494898
22 (1,1,1,1,1,1,3,5) 7884871682.236068
23 (1,1,3,5,7,7,7,7) 4300801075205.3851647
24 (1,1,3,5,5,7,7,7) 11827202150405.0990195
25 (1,1,3,3,5,7,7,7) 10752002150404.8989797
26 (1,1,1,3,5,7,7,7) 7168001433604.7958317
27 (1,1,3,5,5,5,7,7) 12902402150404.7958317
28 (1,1,3,3,5,5,7,7) 20966403225604.5825758
29 (1,1,1,3,5,5,7,7) 12902402150404.472136
30 (1,1,3,3,3,5,7,7) 12902402150404.3588991
31 (1,1,1,3,3,5,7,7) 13977602150404.2426405
32 (1,1,1,1,3,5,7,7) 6988801075204.1231055
33 (1,1,3,5,5,5,5,7) 5913601075204.472136
34 (1,1,3,3,5,5,5,7) 15052802150404.2426405
35 (1,1,1,3,5,5,5,7) 8601601433604.1231055
36 (1,1,3,3,3,5,5,7) 16128002150404
37 (1,1,1,3,3,5,5,7) 16128002150403.8729835
38 (1,1,1,1,3,5,5,7) 7526401075203.7416575
39 (1,1,3,3,3,3,5,7) 7526401075203.7416575
40 (1,1,1,3,3,3,5,7) 11468801433603.6055512
41 (1,1,1,1,3,3,5,7) 9139201075203.4641016
42 (1,1,1,1,1,3,5,7) 365568430083.3166249
43 (1,1,3,5,7,9,9,9) 17203204300806.4031243
44 (1,1,3,5,7,7,9,9) 32256006451206.0827627
45 (1,1,3,5,5,7,9,9) 29030406451205.8309517
46 (1,1,3,3,5,7,9,9) 32256006451205.6568542
47 (1,1,1,3,5,7,9,9) 21504004300805.5677648
48 (1,1,3,5,7,7,7,9) 21504004300805.7445626
49 (1,1,3,5,5,7,7,9) 35481606451205.4772258
50 (1,1,3,3,5,7,7,9) 35481606451205.291503
51 (1,1,1,3,5,7,7,9) 23654404300805.1961527
52 (1,1,3,5,5,5,7,9) 21504004300805.1961527
53 (1,1,3,3,5,5,7,9) 38707206451205
54 (1,1,1,3,5,5,7,9) 23654404300804.8989797
55 (1,1,3,3,3,5,7,9) 25804804300804.7958317
56 (1,1,1,3,3,5,7,9) 27955204300804.6904159
57 (1,1,1,1,3,5,7,9) 13977602150404.5825758
58 (1,1,3,5,7,9,11,11) 516096012902407.1414285
59 (1,1,3,5,7,9,9,11) 580608012902406.78233
60 (1,1,3,5,7,7,9,11) 580608012902406.480741
61 (1,1,3,5,5,7,9,11) 580608012902406.244998
62 (1,1,3,3,5,7,9,11) 645120012902406.0827627
63 (1,1,1,3,5,7,9,11) 43008008601606.0000000
64 (1,1,3,5,7,9,11,13) 2580480103219207.5498347

The E8 family

The E8 family has symmetry order 696,729,600.

There are 255 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Eight forms are shown below, 4 single-ringed, 3 truncations (2 rings), and the final omnitruncation are given below. Bowers-style acronym names are given for cross-referencing.

See also list of E8 polytopes for Coxeter plane graphs of this family.

# Coxeter-Dynkin diagram
Names Element counts
7-faces 6-faces 5-faces 4-faces Cells Faces Edges Vertices
1421 (fy) 19440207360483840483840241920604806720240
2Truncated 421 (tiffy) 18816013440
3Rectified 421 (riffy) 1968037584019353603386880266112010281601814406720
4Birectified 421 (borfy) 196803825602600640774144099187205806080145152060480
5Trirectified 421 (torfy) 196803825602661120931392016934400145152004838400241920
6Rectified 142 (buffy) 196803825602661120907200016934400169344007257600483840
7Rectified 241 (robay) 196803134401693440471744072576005322240145152069120
8241 (bay) 1752014496054432012096001209600483840691202160
9Truncated 241 138240
10142 (bif) 240010608072576022982403628800241920048384017280
11Truncated 142 967680
12Omnitruncated 421 696729600

Regular and uniform honeycombs

Coxeter-Dynkin diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 7-space:

# Coxeter group Coxeter diagram Forms
1{\tilde {A}}_{7}[3[8]]29
2{\tilde {C}}_{7}[4,35,4]135
3{\tilde {B}}_{7}[4,34,31,1]191 (64 new)
4{\tilde {D}}_{7}[31,1,33,31,1]77 (10 new)
5{\tilde {E}}_{7}[33,3,1]143

Regular and uniform tessellations include:

Regular and uniform hyperbolic honeycombs

There are no compact hyperbolic Coxeter groups of rank 8, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However there are 4 noncompact hyperbolic Coxeter groups of rank 8, each generating uniform honeycombs in 7-space as permutations of rings of the Coxeter diagrams.

{\bar {P}}_{7} = [3,3[7]]:
{\bar {Q}}_{7} = [31,1,32,32,1]:
{\bar {S}}_{7} = [4,33,32,1]:
{\bar {T}}_{7} = [33,2,2]:

References

  1. 1 2 3 Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.

External links

This article is issued from Wikipedia - version of the Monday, January 12, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.