Universal Time

"UT1" redirects here. For other uses, see UT1 (disambiguation).

Universal Time (UT) is a time standard based on Earth's rotation. It is a modern continuation of Greenwich Mean Time (GMT), i.e., the mean solar time on the Prime Meridian at Greenwich. In fact, the expression "Universal Time" is ambiguous (when accuracy of better than a few seconds is required), as there are several versions of it, the most commonly used being Coordinated Universal Time (UTC) and UT1 (see below).[1] All of these versions of UT, except for UTC, are based on Earth's rotation relative to distant celestial objects (stars and quasars), but with a scaling factor and other adjustments to make them closer to solar time. UTC is based on International Atomic Time, with leap seconds added to keep it within 0.9 second of UT1.

Universal Time and standard time

Prior to the introduction of standard time, each municipality throughout the civilized world set its official clock, if it had one, according to the local position of the Sun (see solar time). This served adequately until the introduction of rail travel in Britain, which made it possible to travel fast enough over long distances to require continuous re-setting of timepieces as a train progressed in its daily run through several towns. Greenwich Mean Time, where all clocks in Britain were set to the same time, was established to solve this problem. Chronometers or telegraphy was used to synchronize these clocks.[2]

Standard time zones of the world since 2015. The number at the bottom of each timezone specifies the number of hours to add to UTC to convert it to the local time.

Standard time, as originally proposed by Scottish-Canadian Sir Sandford Fleming in 1879, divided the world into twenty-four time zones, each one covering 15 degrees of longitude. All clocks within each zone would be set to the same time as the others, but differed by one hour from those in the neighboring zones. The local time at the Royal Greenwich Observatory in Greenwich, England was adopted as standard on 22 October 1884 at the end of the International Meridian Conference,[3] leading to the widespread use of Greenwich Mean Time to set local clocks. This location was chosen because by 1884 two-thirds of all nautical charts and maps already used it as their prime meridian.[4] The conference did not adopt Fleming's time zones because they were outside the purpose for which it was called, which was to choose a basis for universal time (as well as a prime meridian).

During the period between 1848 to 1972, all of the major countries adopted time zones based on the Greenwich meridian.[5]

In 1935, the term Universal Time was recommended by the International Astronomical Union as a more precise term than Greenwich Mean Time, because GMT could refer to either an astronomical day starting at noon or a civil day starting at midnight.[6] The term Greenwich Mean Time persists, however, in common usage to this day in reference to civil timekeeping.

Measurement

Based on the rotation of the Earth, time can be measured by observing celestial bodies crossing the meridian every day. Astronomers found that it was more accurate to establish time by observing stars as they crossed a meridian rather than by observing the position of the Sun in the sky. Nowadays, UT in relation to International Atomic Time (TAI) is determined by Very Long Baseline Interferometry (VLBI) observations of distant quasars, a method which can determine UT1 to within 4 milliseconds.[7][8]

An 1853 "Universal Dial Plate" showing the relative times of "all nations" before the adoption of universal time

The rotation of the Earth and UT are monitored by the International Earth Rotation and Reference Systems Service (IERS). The International Astronomical Union also is involved in setting standards, but the final arbiter of broadcast standards is the International Telecommunication Union or ITU.[9]

The rotation of the Earth is somewhat irregular, and is very gradually slowing due to tidal acceleration. Furthermore, the length of the second was determined from observations of the Moon between 1750 and 1890. All of these factors cause the mean solar day, on the average, to be slightly longer than the nominal 86,400 SI seconds, the traditional number of seconds per day. As UT is slightly irregular in its rate, astronomers introduced Ephemeris Time, which has since been replaced by Terrestrial Time (TT). Because Universal Time is synchronous with night and day, and more precise atomic-frequency standards drift away from this, however, UT is still used to produce a correction (called a leap second) to atomic time, in order to obtain a broadcast form of civil time that carries atomic frequency. Thus, civil broadcast standards for time and frequency usually follow International Atomic Time closely, but occasionally step (or "leap") in order to prevent them from drifting too far from mean solar time.

Barycentric Dynamical Time (TDB), a form of atomic time, is now used in the construction of the ephemerides of the planets and other solar system objects, for two main reasons.[10] First, these ephemerides are tied to optical and radar observations of planetary motion, and the TDB time scale is fitted so that Newton's laws of motion, with corrections for general relativity, are followed. Next, the time scales based on Earth's rotation are not uniform and therefore, are not suitable for predicting the motion of bodies in our solar system.

Versions

There are several versions of Universal Time:

ERA = 2π(0.7790572732640 + 1.00273781191135448Tu) radians
where Tu = (Julian UT1 date - 2451545.0)[12]
UT2 = UT1 + 0.022\cdot\sin(2\pi t) - 0.012\cdot\cos(2\pi t) - 0.006\cdot\sin(4\pi t) + 0.007\cdot\cos(4\pi t)\;\mbox{seconds}
where t is the time as fraction of the Besselian year.[14]

Adoption in various countries

The table shows the dates of adoption of time zones based on the Greenwich meridian, including half-hour zones.

Year Countries [16]
1848 Great Britain [17]
1880 Ireland (entire island)
1883 Canada, USA [18]
1884 Serbia
1888 Japan
1892 Belgium, the Netherlands,[19] S. Africa[20]
1893 Italy, Germany, Austria-Hungary (railways)
1894 Bulgaria, Denmark, Norway, Switzerland, Romania, Turkey (railways)
1895 Australia, New Zealand, Natal
1896 Formosa (Taiwan)
1899 Puerto Rico, Philippines
1900 Sweden, Egypt, Alaska
1901 Spain
1902 Mozambique, Rhodesia
1903 Ts'intao, Tientsin
1904 China Coast, Korea, Manchuria, N. Borneo
1905 Chile
1906 India,[21] Ceylon(Sri Lanka), Seychelles
1907 Mauritius, Chagos
1908 Faroe Is., Iceland
1911 France, Algeria, Tunis,[22] British West Indies
1912 Portugal,[23] other French possessions, Samoa, Hawaii, Midway and Guam, Timor, Bismarck Arch., Jamaica, Bahamas Is.
1913 British Honduras, Dahomey
1914 Albania, Brazil, Colombia
1916 Greece, Poland, Turkey
Year Countries
1917 Iraq, Palestine
1918 Guatemala, Panama, Gambia, Gold Coast
1919 Latvia, Nigeria
1920 Argentine, Uruguay, Burma, Siam
1921 Finland, Estonia, Costa Rica
1922 Mexico
1924 Java, USSR
1925 Cuba
1928 China Inland
1930 Bermuda
1931 Paraguay
1932 Barbados, Bolivia, Dutch East Indies
1934 Nicaragua, E. Niger
By 1936 Labrador, Norfolk I.
By 1937 Cayman Is., Curaçao, Ecuador, Newfoundland
By 1939 Fernando Po, Persia
By 1940 Lord Howe I.
1940 The Netherlands
By 1948 Aden, Ascension I., Bahrein, British Somaliland, Calcutta, Dutch Guiana, Kenya, Federated Malay States, Oman, Straits Settlements, St. Helena, Uganda, Zanzibar
By 1953 Raratonga, South Georgia
By 1954 Cook Is.
By 1959 Maldive I. Republic
By 1961 Friendly Is., Tonga Is.
By 1962 Saudi Arabia
By 1964 Niue Is.
1972 Liberia

Apart from the Nepal Time Zone (UTC+05:45) and the Chatham Standard Time Zone (UTC+12:45) used in New Zealand's Chatham Islands,[24] all timezones in use are defined by an offset from UTC that is a multiple of half an hour, and in most cases a multiple of an hour.

See also

Notes

  1. Guinot 2011, p. S181.
  2. Howse 1997, ch. 4.
  3. Howse 1997, p. 12.
  4. Howse 1997, ch. 5.
  5. Howse 1997, ch. 6.
  6. McCarthy & Seidelmann 2009, p. 14.
  7. McCarthy & Seidelmann 2009, pp. 68–9.
  8. Urban & Seidelmann 2013, p. 175.
  9. McCarthy & Seidelmann 2009, Ch. 18.
  10. Urban & Seidelmann 2013, p. 7. Strictly speaking, a major producer of ephemerides, the Jet Propulsion Laboratory, uses a time scale they derive, Teph, which is functionally equivalent to TDB.
  11. Urban & Seidelmann 2013, p. 81.
  12. McCarthy & Seidelmann 2009, pp. 15–17, 62–64, 68–69, 76.
  13. IERS n.d..
  14. Date and Time Definitions n.d.
  15. McCarthy & Seidelmann 2009, Ch. 14.
  16. Howse 1980, pp. 154–5. Names have not been updated.
  17. legal in 1880
  18. legal in 1918
  19. Legal time reverted to Amsterdam time 1909; to Central European Time 1940,
  20. except Natal
  21. except Calcutta
  22. and many French overseas possessions,
  23. and overseas possessions,
  24. HM Nautical Almanac Office 2015.

References

 This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".

External links

This article is issued from Wikipedia - version of the Thursday, January 21, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.