Tungsten diselenide

Tungsten diselenide
Identifiers
12067-46-8
EC Number 235-078-7
Jmol interactive 3D Image
PubChem 82910
Properties
Se2W
Molar mass 341.76 g/mol
Appearance grey to black solid
Odor odorless
Density 9.32 g/cm3[1]
Melting point > 1200 °C
insoluble
Structure
hP6, space group P6
3
/mmc, No 194[1]
a = 0.3297 nm, c = 1.2982 nm
Trigonal prismatic (WIV)
Pyramidal (Se2−)
Hazards
Main hazards External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Tungsten diselenide is an inorganic compound with the formula WSe2.[2] The compound adopts a hexagonal crystalline structure similar to molybdenum disulfide. Every tungsten atom is covalently bonded to six selenium ligands in a trigonal prismatic coordination sphere while each selenium is bonded to three tungsten atoms in a pyramidal geometry. The tungsten– selenium bond has a length of 0.2526 nm, and the distance between selenium atoms is 0.334 nm.[3] Layers stack together via van der Waals interactions. WSe2 is a very stable semiconductor in the group-VI transition metal dichalcogenides.

Synthesis

Heating thin films of tungsten under pressure from gaseous selenium and high temperatures (>800 K) using the sputter deposition technique leads to the films crystallizing in hexagonal structures with the correct stoichiometric ratio.[4]

W + 2 Se → WSe2

Potential applications

Atomic image of a WSe2 monolayer showing hexagonal symmetry and three-fold defects. Scale bar: 2 nm (0.5 nm in the inset).[5]

Transition metal dichalcogenides are semiconductors with potential applications in solar cells. WSe
2
has a band-gap of ~1.35 eV with a temperature dependence of -4.6×104 eV/K.[6] WSe
2
photoelectrodes are stable in both acidic and basic conditions, making them potentially useful in electrochemical solar cells.[7][8][9]

The properties of WSe
2
monolayers differ from those of the bulk state, as is typical for semiconductors. Mechanically exfoliated monolayers of WSe
2
are transparent photovoltaic materials with LED properties.[10] The resulting solar cells pass 95 percent of the incident light, with one tenth of the remaining five percent converted into electrical power.[11][12] The material can be changed from p-type to n-type by changing the voltage of an adjacent metal electrode from positive to negative, allowing devices made from it to have tunable bandgaps. As a result, it may enable LEDs of any color to be made from a single material.[13]

References

  1. 1 2 Agarwal, M. K.; Wani, P. A. (1979). "Growth conditions and crystal structure parameters of layer compounds in the series Mo1−xWxSe2". Materials Research Bulletin 14 (6): 825–830. doi:10.1016/0025-5408(79)90144-2.
  2. Holleman, A. F.; Wiberg, E. (2001), Inorganic Chemistry, San Diego: Academic Press, ISBN 0-12-352651-5
  3. Schutte, W.J.; De Boer, J.L.; Jellinek, F. (1986). "Crystal Structures of Tungsten Disulfide and Diselenide". Journal of Solid State Chemistry 70: 207–209. doi:10.1016/0022-4596(87)90057-0.
  4. Pouzet, J.; Bernede, J.C.; Khellil, A.; Essaidi, H.; Benhida, S. (1992). "Preparation and characterization of tungsten diselenide thin films". Thin Solid Films 208: 252–259. doi:10.1016/0040-6090(92)90652-R.
  5. Lin, Y. C.; Björkman, T. R.; Komsa, H. P.; Teng, P. Y.; Yeh, C. H.; Huang, F. S.; Lin, K. H.; Jadczak, J.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. (2015). "Three-fold rotational defects in two-dimensional transition metal dichalcogenides". Nature Communications 6: 6736. Bibcode:2015NatCo...6E6736L. doi:10.1038/ncomms7736. PMC 4396367. PMID 25832503.
  6. Upadhyayula, L.C.; Loferski, J.J.; Wold, A.; Giriat, W.; Kershaw, R. (1968). "Semiconducting Properties of Single Crystals of n- and p-Type Tungsten Diselenide (WSe2)". Journal of Applied Physics 39: 353–358. doi:10.1063/1.1655829.
  7. Gobrecht, J.; Gerischer, H.; Tributsch, H. (1978). "Electrochemical Solar Cell Based on the d-Band Semiconductor Tungsten-Diselenide". Berichte der Bunsengesellschaft für physikalische Chemie 82 (12): 1331–1335. doi:10.1002/bbpc.19780821212.
  8. Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A., "Two-dimensional material nanophotonics", arXiv.org, e-Print Arch., Condens. Matter 2014, 1-23, arXiv:1410.3882v1411.
  9. Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H., "Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material", Chemical Society Reviews 2015, volume 44, 2757-2785. doi:10.1039/C4CS00282B
  10. Johnson, Dexter (11 March 2014). "Tungsten Diselenide Is New 2-D Optoelectronic Wonder Material". IEEE Spectrum. Retrieved 19 March 2014.
  11. "Tungsten diselenide shows potential for ultrathin, flexible, semi-transparent solar cells". Gizmag.com. 11 March 2014. Retrieved 17 August 2014.
  12. Florian Aigenr (10 March 2014). "Atomically thin solar cells" (Press release). Vienna University of Technology. Retrieved 18 August 2014.
  13. "One-molecule-thick material could lead to ultrathin, flexible solar cells and LEDs". Kurzweil Accelerating Intelligence newsletter. 11 March 2014.
This article is issued from Wikipedia - version of the Tuesday, January 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.