Truncated 7-orthoplexes


7-orthoplex

Truncated 7-orthoplex

Bitruncated 7-orthoplex

Tritruncated 7-orthoplex

7-cube

Truncated 7-cube

Bitruncated 7-cube

Tritruncated 7-cube
Orthogonal projections in B7 Coxeter plane

In seven-dimensional geometry, a truncated 7-orthoplex is a convex uniform 7-polytope, being a truncation of the regular 7-orthoplex.

There are 6 truncations of the 7-orthoplex. Vertices of the truncation 7-orthoplex are located as pairs on the edge of the 7-orthoplex. Vertices of the bitruncated 7-orthoplex are located on the triangular faces of the 7-orthoplex. Vertices of the tritruncated 7-orthoplex are located inside the tetrahedral cells of the 7-orthoplex. The final three truncations are best expressed relative to the 7-cube.

Truncated 7-orthoplex

Truncated 7-orthoplex
Typeuniform 7-polytope
Schläfli symbol t{35,4}
Coxeter-Dynkin diagrams

6-faces
5-faces
4-faces
Cells3920
Faces2520
Edges924
Vertices168
Vertex figureElongated pentacross pyramid
Coxeter groupsB7, [35,4]
D7, [34,1,1]
Propertiesconvex

Alternate names

Coordinates

Cartesian coordinates for the vertices of a truncated 7-orthoplex, centered at the origin, are all 168 vertices are sign (4) and coordinate (42) permutations of

(±2,±1,0,0,0,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Construction

There are two Coxeter groups associated with the truncated 7-orthoplex, one with the C7 or [4,35] Coxeter group, and a lower symmetry with the D7 or [34,1,1] Coxeter group.

Bitruncated 7-orthoplex

Bitruncated 7-orthoplex
Typeuniform 7-polytope
Schläfli symbol 2t{35,4}
Coxeter-Dynkin diagrams

6-faces
5-faces
4-faces
Cells
Faces
Edges4200
Vertices840
Vertex figure
Coxeter groupsB7, [35,4]
D7, [34,1,1]
Propertiesconvex

Alternate names

Coordinates

Cartesian coordinates for the vertices of a bitruncated 7-orthoplex, centered at the origin, are all sign and coordinate permutations of

(±2,±2,±1,0,0,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Tritruncated 7-orthoplex

The tritruncated 7-orthoplex can tessellation space in the quadritruncated 7-cubic honeycomb.

Tritruncated 7-orthoplex
Typeuniform 7-polytope
Schläfli symbol 3t{35,4}
Coxeter-Dynkin diagrams

6-faces
5-faces
4-faces
Cells
Faces
Edges10080
Vertices2240
Vertex figure
Coxeter groupsB7, [35,4]
D7, [34,1,1]
Propertiesconvex

Alternate names

Coordinates

Cartesian coordinates for the vertices of a tritruncated 7-orthoplex, centered at the origin, are all sign and coordinate permutations of

(±2,±2,±2,±1,0,0,0)

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Notes

  1. Klitzing, (x3x3o3o3o3o4o - tez)
  2. Klitzing, (o3x3x3o3o3o4o - botaz)
  3. Klitzing, (o3o3x3x3o3o4o - totaz)

References

External links

This article is issued from Wikipedia - version of the Sunday, December 28, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.