Trihalomethane

Trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Many trihalomethanes find uses in industry as solvents or refrigerants. THMs are also environmental pollutants, and many are considered carcinogenic. Trihalomethanes with all the same halogen atoms are called haloforms. Several of these are easy to prepare through the haloform reaction.

Table of common trihalomethanes

Common trihalomethanes (ordered by molecular weight)
Molecular

formula

IUPAC name CAS registry number Common name Other names Molecule
CHF3 trifluoromethane 75-46-7 fluoroform Freon 23, R-23, HFC-23
CHClF2 chlorodifluoromethane 75-45-6 chlorodifluoromethane R-22, HCFC-22
CHCl3 trichloromethane 67-66-3 chloroform R-20, methyl trichloride
CHBrCl2 bromodichloromethane 75-27-4 bromodichloromethane dichlorobromomethane, BDCM
CHBr2Cl dibromochloromethane 124-48-1 dibromochloromethane chlorodibromomethane, CDBM
CHBr3 tribromomethane 75-25-2 bromoform methyl tribromide
CHI3 triiodomethane 75-47-8 iodoform methyl triiodide

Industrial uses

Refrigerants

Trifluoromethane and chlorodifluoromethane are both used as refrigerants in some applications. Trihalomethanes released to the environment break down faster than chlorofluorocarbons (CFCs), thereby doing much less damage to the ozone layer . Chlorodifluoromethane is a refrigerant HCFC, or hydrochlorofluorocarbon, while fluoroform is an HFC, or hydrofluorocarbon. Fluoroform is not ozone depleting.

Unfortunately, the breakdown of trihalomethane HCFCs does still result in the creation of some free chlorine radicals in the upper atmosphere and subsequent ozone destruction. Ideally, HCFCs will be phased out entirely in favour of entirely nonchlorinated refrigerants.

Solvents

Chloroform is a very common solvent used in organic chemistry. It is a significantly less polar solvent than water, well-suited to dissolving many organic compounds.

Although still toxic and potentially carcinogenic, chloroform is significantly less harmful than carbon tetrachloride. Because of the health and regulatory issues associated with the use of carbon tetrachloride, in modern chemistry laboratories chloroform is used as a cheaper, cleaner alternative wherever possible.

Water pollutants

Trihalomethanes are formed as a by-product predominantly when chlorine is used to disinfect water for drinking. They represent one group of chemicals generally referred to as disinfection by-products. They result from the reaction of chlorine or bromine with organic matter present in the water being treated. The THMs produced have been associated through epidemiological studies with some adverse health effects. Many governments set limits on the amount permissible in drinking water. However, trihalomethanes are only one group of many hundreds of possible disinfection by-productsβ€”the vast majority of which are not monitoredβ€”and it has not yet been clearly demonstrated which of these are the most plausible candidate for causation of these health effects. In the United States, the EPA limits the total concentration of the four chief constituents (chloroform, bromoform, bromodichloromethane, and dibromochloromethane), referred to as total trihalomethanes (TTHM), to 80 parts per billion in treated water.

Chloroform is also formed in swimming pools which are disinfected with chlorine or hypochlorite in the haloform reaction with organic substances (e.g. urine, sweat, hair and skin particles). Some of the THMs are quite volatile and may easily vaporize into the air. This makes it possible to inhale THMs while showering, for example. The EPA, however, has determined that this exposure is minimal compared to that from consumption. In swimmers, uptake of THMs is greatest via the skin with dermal absorption accounting for 80% of THM uptake.[1] Exercising in a chlorinated pool increases the toxicity of a "safe" chlorinated pool atmosphere[2] with toxic effects of chlorine byproducts greater in young swimmers than older swimmers.[3] Studies in adolescents have shown an inverse relationship between serum testosterone levels and the amount of time spent in public pools. Chlorination by-products have been linked as a probable cause.[4]

References

  1. ↑ Lindstrom, A B; J D Pleil, D C Berkoff (1997). "Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training". Environmental Health Perspectives 105 (6): 636–642. doi:10.1289/ehp.97105636. ISSN 0091-6765. PMC 1470079. PMID 9288498. Cite uses deprecated parameter |coauthors= (help)
  2. ↑ Drobnic, Franchek; Assumpci?? Freixa, Pere Casan, Joaqu??N Sanchis, Xavier Guardino (1996). "Assessment of chlorine exposure in swimmers during training". Medicine &amp Science in Sports &amp Exercise 28 (2): 271–274. doi:10.1097/00005768-199602000-00018. ISSN 0195-9131. Cite uses deprecated parameter |coauthors= (help)
  3. ↑ Aiking, Harry; Manila B. van Ackert, Rob J.P.M. SchΓΆlten, Jan F. Feenstra, Hans A. Valkenburg (1994). "Swimming pool chlorination: a health hazard?". Toxicology Letters 72 (1-3): 375–380. doi:10.1016/0378-4274(94)90051-5. ISSN 0378-4274. Cite uses deprecated parameter |coauthors= (help)
  4. ↑ Nickmilder, M.; A. Bernard (2011). "Associations between testicular hormones at adolescence and attendance at chlorinated swimming pools during childhood". International Journal of Andrology 34 (5pt2): e446–e458. doi:10.1111/j.1365-2605.2011.01174.x. ISSN 0105-6263. Cite uses deprecated parameter |coauthors= (help)

External links

This article is issued from Wikipedia - version of the Saturday, January 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.