Triakis octahedron

Triakis octahedron

(Click here for rotating model)
TypeCatalan solid
Coxeter diagram
Conway notationkO
Face typeV3.8.8

isosceles triangle
Faces24
Edges36
Vertices14
Vertices by type8{3}+6{8}
Symmetry groupOh, B3, [4,3], (*432)
Rotation groupO, [4,3]+, (432)
Dihedral angle147° 21' 0"
 \arccos ( -\frac{3 + 8\sqrt{2}}{17} )
Propertiesconvex, face-transitive

Truncated cube
(dual polyhedron)

Net

In geometry, a triakis octahedron (or kisoctahedron[1]) is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated cube.

It can be seen as an octahedron with triangular pyramids added to each face; that is, it is the Kleetope of the octahedron. It is also sometimes called a trisoctahedron, or, more fully, trigonal trisoctahedron. Both names reflect the fact that it has three triangular faces for every face of an octahedron. The tetragonal trisoctahedron is another name for the deltoidal icositetrahedron, a different polyhedron with three quadrilateral faces for every face of an octahedron.

This convex polyhedron is topologically similar to the concave stellated octahedron. They have the same face connectivity, but the vertices are in different relative distances from the center.

If its shorter edges have length 1, its surface area and volume are:

A=3\sqrt{7+4\sqrt{2}}
V=\frac{1}{2}(3+2\sqrt{2}).

Orthogonal projections

The triakis octahedron has three symmetry positions, two located on vertices, and one mid-edge:

Orthogonal projections
Projective
symmetry
[2] [4] [6]
Triakis
octahedron
Truncated
cube

Cultural references

Related polyhedra

Spherical triakis octahedron

The triakis octahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

The triakis octahedron is a part of a sequence of polyhedra and tilings, extending into the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

The triakis octahedron is also a part of a sequence of polyhedra and tilings, extending into the hyperbolic plane. These face-transitive figures have (*n42) reflectional symmetry.

*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 .8.8
n-kis
figures
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V.8.8

References

  1. Conway, Symmetries of things, p.284

External links

This article is issued from Wikipedia - version of the Monday, February 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.