Timeline of quantum mechanics

This timeline of quantum mechanics shows the key steps, precursors and contributors to the development of quantum mechanics, quantum field theories and quantum chemistry.[1][2]

19th century

Image of Becquerel's photographic plate which has been fogged by exposure to radiation from a uranium salt. The shadow of a metal Maltese Cross placed between the plate and the uranium salt is clearly visible.

20th century

1900–1909

Einstein, in 1905, when he wrote the Annus Mirabilis papers

1910–1919

A schematic diagram of the apparatus for Millikan's refined oil drop experiment.

1920–1929

A plaque at the University of Frankfurt commemorating the Stern–Gerlach experiment.

1930–1939

Electron microscope constructed by Ernst Ruska in 1933.

1940–1949

A Feynman diagram showing the radiation of a gluon when an electron and positron are annihilated.

1950–1959

1960–1969

The baryon decuplet of the Eightfold Way proposed by Murray Gell-Mann in 1962. The Ω particle at the bottom had not yet been observed at the time, but a particle closely matching these predictions was discovered[38] by a particle accelerator group at Brookhaven, proving Gell-Mann's theory.

1971–1979

A 1974 photograph of an event in a bubble chamber at Brookhaven National Laboratory. Each track is left by a charged particle, one of which is a baryon containing the charm quark.[49]

1980–1999

21st century

Graphene is a planar atomic-scale honeycomb lattice made of carbon atoms which exhibits unusual and interesting quantum properties.

See also

Learning materials related to the history of Quantum Mechanics at Wikiversity

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Peacock 2008, pp. 175–183
  2. Ben-Menahem 2009
  3. Becquerel, Henri (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus 122: 420–421.
  4. Marie Curie and the Science of Radioactivity: Research Breakthroughs (1897–1904). Aip.org. Retrieved on 2012-05-17.
  5. Soddy, Frederick (December 12, 1922). "The origins of the conceptions of isotopes" (PDF). Nobel Lecture in Chemistry. Retrieved April 2012.
  6. Ernest Rutherford, Baron Rutherford of Nelson, of Cambridge. Encyclopædia Britannica on-line. Retrieved on 2012-05-17.
  7. The Nobel Prize in Chemistry 1908: Ernest Rutherford. nobelprize.org
  8. McCormmach, Russell (Spring 1967). "Henri Poincaré and the Quantum Theory". Isis 58 (1): 37–55. doi:10.1086/350182.
  9. Irons, F. E. (August 2001). "Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms". American Journal of Physics 69 (8): 879–884. Bibcode:2001AmJPh..69..879I. doi:10.1119/1.1356056.
  10. Procopiu, Ştefan (1913). "Determining the Molecular Magnetic Moment by M. Planck's Quantum Theory". Bulletin scientifique de l'Académie Roumaine de sciences. 1: 151.
  11. Pais, Abraham (1995). "Introducing Atoms and Their Nuclei". In Brown, Laurie M.; Pais, Abraham; Pippard, Brian. Twentieth Century Physics 1. American Institute of Physics Press. p. 89. ISBN 9780750303101. Now the beauty of Franck and Hertz's work lies not only in the measurement of the energy loss E2-E1 of the impinging electron, but they also observed that, when the energy of that electron exceeds 4.9 eV, mercury begins to emit ultraviolet light of a definite frequency ν as defined in the above formula. Thereby they gave (unwittingly at first) the first direct experimental proof of the Bohr relation!
  12. P. S. Epstein, Zur Theorie des Starkeffektes, Annalen der Physik, vol. 50, pp. 489-520 (1916)
  13. K. Schwarzschild, Sitzungsberichten der Kgl. Preuss. Akad. d. Wiss. April 1916, p. 548
  14. Lewis, G.N. (1926). "The conservation of photons". Nature 118 (2981): 874–875. Bibcode:1926Natur.118..874L. doi:10.1038/118874a0.
  15. P. S. Epstein, The Stark Effect from the Point of View of Schroedinger's Quantum Theory, Physical Review, vol 28, pp. 695-710 (1926)
  16. John von Neumann. 1932. The Mathematical Foundations of Quantum Mechanics., Princeton University Press: Princeton, New Jersey, reprinted in 1955, 1971 and 1983 editions
  17. Peter, F.; Weyl, H. (1927). "Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe". Math. Ann. 97: 737–755. doi:10.1007/BF01447892.
  18. Brauer, Richard; Weyl, Hermann (1935). "Spinors in n dimensions". American Journal of Mathematics (The Johns Hopkins University Press) 57 (2): 425–449. doi:10.2307/2371218. JSTOR 2371218.
  19. Frédéric Joliot-Curie (December 12, 1935). "Chemical evidence of the transmutation of elements" (PDF). Nobel Lecture. Retrieved April 2012.
  20. Einstein A, Podolsky B, Rosen N; Podolsky; Rosen (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Phys. Rev. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777.
  21. Birkhoff, Garrett and von Neumann, J. (1936). "The Logic of Quantum Mechanics". Annals of Mathematics 37 (4): 823–843. doi:10.2307/1968621. JSTOR 1968621.
  22. Omnès, Roland (8 March 1999). Understanding Quantum Mechanics. Princeton University Press. ISBN 978-0-691-00435-8. Retrieved 17 May 2012.
  23. Dalla Chiara, M. L.; Giuntini, R. (1994). "Unsharp quantum logics". Foundations of Physics 24 (8): 1161–1177. Bibcode:1994FoPh...24.1161D. doi:10.1007/BF02057862.
  24. Georgescu, G. (2006). "N-valued Logics and Łukasiewicz-Moisil Algebras". Axiomathes 16 (1–2): 123. doi:10.1007/s10516-005-4145-6.
  25. H. Jahn and E. Teller (1937). "Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy". Proceedings of the Royal Society A 161 (905): 220–235. Bibcode:1937RSPSA.161..220J. doi:10.1098/rspa.1937.0142.
  26. Dyson, F. (1949). "The S Matrix in Quantum Electrodynamics". Phys. Rev. 75 (11): 1736. Bibcode:1949PhRv...75.1736D. doi:10.1103/PhysRev.75.1736.
  27. Stix, Gary (October 1999). "Infamy and honor at the Atomic Café: Edward Teller has no regrets about his contentious career". Scientific American: 42–43. Retrieved April 2012.
  28. Hans A. Bethe (May 28, 1952). MEMORANDUM ON THE HISTORY OF THERMONUCLEAR PROGRAM (Report). Reconstructed version from only partially declassified documents, with certain words deliberately deleted.
  29. Bloch, F.; Hansen, W.; Packard, Martin (1946). "Nuclear Induction". Physical Review 69 (3–4): 127. Bibcode:1946PhRv...69..127B. doi:10.1103/PhysRev.69.127.
  30. Bloch, F.; Jeffries, C. (1950). "A Direct Determination of the Magnetic Moment of the Proton in Nuclear Magnetons". Physical Review 80 (2): 305. Bibcode:1950PhRv...80..305B. doi:10.1103/PhysRev.80.305.
  31. Bloch, F. (1946). "Nuclear Induction". Physical Review 70 (7–8): 460. Bibcode:1946PhRv...70..460B. doi:10.1103/PhysRev.70.460.
  32. Gutowsky, H. S.; Kistiakowsky, G. B.; Pake, G. E.; Purcell, E. M. (1949). "Structural Investigations by Means of Nuclear Magnetism. I. Rigid Crystal Lattices". The Journal of Chemical Physics 17 (10): 972. Bibcode:1949JChPh..17..972G. doi:10.1063/1.1747097.
  33. Gardner, J.; Purcell, E. (1949). "A Precise Determination of the Proton Magnetic Moment in Bohr Magnetons". Physical Review 76 (8): 1262. Bibcode:1949PhRv...76.1262G. doi:10.1103/PhysRev.76.1262.2.
  34. Carver, T. R.; Slichter, C. P. (1953). "Polarization of Nuclear Spins in Metals". Physical Review 92 (1): 212–213. Bibcode:1953PhRv...92..212C. doi:10.1103/PhysRev.92.212.2.
  35. Hugh Everett Theory of the Universal Wavefunction, Thesis, Princeton University, (1956, 1973), pp 1–140
  36. Everett, Hugh (1957). "Relative State Formulation of Quantum Mechanics". Reviews of Modern Physics 29 (3): 454–462. Bibcode:1957RvMP...29..454E. doi:10.1103/RevModPhys.29.454.
  37. Jacek W. Hennel, Jacek Klinowski (2005). Jacek Klinowski, ed. "New techniques in solid-state NMR". Topics in Current Chemistry 246. Springer: 1–14. doi:10.1007/b98646. ISBN 3-540-22168-9. |chapter= ignored (help) (New techniques in solid-state NMR, p. 1, at Google Books)
  38. V.E. Barnes; Connolly, P.; Crennell, D.; Culwick, B.; Delaney, W.; Fowler, W.; Hagerty, P.; Hart, E.; Horwitz, N.; Hough, P.; Jensen, J.; Kopp, J.; Lai, K.; Leitner, J.; Lloyd, J.; London, G.; Morris, T.; Oren, Y.; Palmer, R.; Prodell, A.; Radojičić, D.; Rahm, D.; Richardson, C.; Samios, N.; Sanford, J.; Shutt, R.; Smith, J.; Stonehill, D.; Strand, R.; et al. (1964). "Observation of a Hyperon with Strangeness Number Three" (PDF). Physical Review Letters 12 (8): 204. Bibcode:1964PhRvL..12..204B. doi:10.1103/PhysRevLett.12.204.
  39. Abragam, Anatole (1961). The Principles of Nuclear Magnetism. Oxford: Clarendon Press. OCLC 242700.
  40. Brian David Josephson (December 12, 1973). "The Discovery of Tunnelling Supercurrents" (PDF). Nobel Lecture. Retrieved April 2012.
  41. Maria Goeppert Mayer (December 12, 1963). "The shell model" (PDF). Nobel Lecture. Retrieved April 2012.
  42. F. Englert, R. Brout; Brout (1964). "Broken Symmetry and the Mass of Gauge Vector Mesons". Physical Review Letters 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.
  43. P.W. Higgs (1964). "Broken Symmetries and the Masses of Gauge Bosons". Physical Review Letters 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.
  44. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble; Hagen; Kibble (1964). "Global Conservation Laws and Massless Particles". Physical Review Letters 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.
  45. G.S. Guralnik (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles". International Journal of Modern Physics A 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431.
  46. T.W.B. Kibble (2009). "Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism". Scholarpedia 4 (1): 6441. Bibcode:2009SchpJ...4.6441K. doi:10.4249/scholarpedia.6441.
  47. M. Blume, S. Brown, Y. Millev (2008). "Letters from the past, a PRL retrospective (1964)". Physical Review Letters. Retrieved 2010-01-30.
  48. "J. J. Sakurai Prize Winners". American Physical Society. 2010. Retrieved 2010-01-30.
  49. "Discovery of the Charmed Baryon". Brookhaven History. Brookhaven National Laboratory.
  50. Wilczek, Frank (1999). "Quantum field theory". Reviews of Modern Physics 71 (2): S85. arXiv:hep-th/9803075. Bibcode:1999RvMPS..71...85W. doi:10.1103/RevModPhys.71.S85.
  51. Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". Journal of Physics C: Solid State Physics 6 (22): L422. Bibcode:1973JPhC....6L.422M. doi:10.1088/0022-3719/6/22/007.
  52. Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". Journal of Physics C: Solid State Physics 7 (24): L457. Bibcode:1974JPhC....7L.457G. doi:10.1088/0022-3719/7/24/006.
  53. Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". British Journal of Radiology 50 (591): 188–94. doi:10.1259/0007-1285-50-591-188. PMID 849520.
  54. Mansfield, P (1977). "Multi-planar image formation using NMR spin echoes". Journal of Physics C: Solid State Physics 10 (3): L55. Bibcode:1977JPhC...10L..55M. doi:10.1088/0022-3719/10/3/004.
  55. Prigogine, Ilya (8 December 1977). "Time, Structure and Fluctuations" (PDF). Nobel lecture. Retrieved April 2012.
  56. Rubinson, K.A.; Rubinson, Kenneth A.; Patterson, John (1979). "Ferromagnetic resonance and spin wave excite journals in metallic glasses". J. Phys. Chem. Solids 40 (12): 941–950. Bibcode:1979JPCS...40..941B. doi:10.1016/0022-3697(79)90122-7.
  57. Aspect, Alain; Grangier, Philippe; Roger, Gérard (1982). "Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities". Physical Review Letters 49 (2): 91. Bibcode:1982PhRvL..49...91A. doi:10.1103/PhysRevLett.49.91.
  58. Aspect, Alain; Dalibard, Jean; Roger, Gérard (1982). "Experimental Test of Bell's Inequalities Using Time- Varying Analyzers". Physical Review Letters 49 (25): 1804. Bibcode:1982PhRvL..49.1804A. doi:10.1103/PhysRevLett.49.1804.
  59. TFTR Machine Parameters. W3.pppl.gov (1996-05-10). Retrieved on 2012-05-17.
  60. JET's Main Features-EFDA JET. Jet.efda.org. Retrieved on 2012-05-17.
  61. European JET website. (PDF) . Retrieved on 2012-05-17.
  62. Japan Atomic Energy Agency. Naka Fusion Institute
  63. Fusion Plasma Research (FPR), JASEA, Naka Fusion Institute. Jt60.naka.jaea.go.jp. Retrieved on 2012-05-17.
  64. Müller, KA; Bednorz, JG (1987). "The discovery of a class of high-temperature superconductors". Science 237 (4819): 1133–9. Bibcode:1987Sci...237.1133M. doi:10.1126/science.237.4819.1133. PMID 17801637.
  65. Pont, M.; Walet, N.R.; Gavrila, M.; McCurdy, C.W. (1988). "Dichotomy of the Hydrogen Atom in Superintense, High-Frequency Laser Fields". Physical Review Letters 61 (8): 939–942. Bibcode:1988PhRvL..61..939P. doi:10.1103/PhysRevLett.61.939. PMID 10039473.
  66. Pont, M.; Walet, N.; Gavrila, M. (1990). "Radiative distortion of the hydrogen atom in superintense, high-frequency fields of linear polarization". Physical Review A 41 (1): 477–494. Bibcode:1990PhRvA..41..477P. doi:10.1103/PhysRevA.41.477. PMID 9902891.
  67. Mihai Gavrila: Atomic Structure and Decay in High-Frequency Fields, in Atoms in Intense Laser Fields, ed. M. Gavrila, Academic Press, San Diego, 1992, pp. 435–510. ISBN 0-12-003901-X
  68. Muller, H.; Gavrila, M. (1993). "Light-Induced Excited States in H". Physical Review Letters 71 (11): 1693–1696. Bibcode:1993PhRvL..71.1693M. doi:10.1103/PhysRevLett.71.1693. PMID 10054474.
  69. Wells, J.C.; Simbotin, I.; Gavrila, M. (1998). "Physical Reality of Light-Induced Atomic States". Physical Review Letters 80 (16): 3479–3482. Bibcode:1998PhRvL..80.3479W. doi:10.1103/PhysRevLett.80.3479.
  70. Ernst, E; van Duijn, M. Gavrila; Muller, H.G. (1996). "Multiply Charged Negative Ions of Hydrogen Induced by Superintense Laser Fields". Physical Review Letters 77 (18): 3759–3762. Bibcode:1996PhRvL..77.3759V. doi:10.1103/PhysRevLett.77.3759. PMID 10062301.
  71. Shertzer, J.; Chandler, A.; Gavrila, M. (1994). "H2+ in Superintense Laser Fields: Alignment and Spectral Restructuring". Physical Review Letters 73 (15): 2039–2042. Bibcode:1994PhRvL..73.2039S. doi:10.1103/PhysRevLett.73.2039. PMID 10056956.
  72. Richard R. Ernst (December 9, 1992). "Nuclear Magnetic Resonance Fourier Transform (2D-FT) Spectroscopy" (PDF). Nobel Lecture. Retrieved April 2012.
  73. PPPL, Princeton, USA. Pppl.gov (1999-02-12). Retrieved on 2012-05-17.
  74. "Lene Hau". Physicscentral.com. Retrieved 2013-01-30.
  75. Vainerman, Leonid (2003). Locally Compact Quantum Groups and Groupoids: Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, February 21–23, 2002. Walter de Gruyter. pp. 247–. ISBN 978-3-11-020005-8. Retrieved 17 May 2012.
  76. LTX EXperiment Achieves First Plasma (at PPPL). Pppl.gov. Retrieved on 2012-05-17.
  77. Aspect, A. (2007). "To be or not to be local". Nature 446 (7138): 866–867. Bibcode:2007Natur.446..866A. doi:10.1038/446866a. PMID 17443174.
  78. "Coherent Population". Defense Procurement News. 2010-06-22. Retrieved 2013-01-30.
  79. Markoff, John (29 May 2014). "Scientists Report Finding Reliable Way to Teleport Data". New York Times. Retrieved 29 May 2014.
  80. Pfaff, W.; et al. (29 May 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science 345: 532–535. arXiv:1404.4369. Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. Retrieved 29 May 2014.

Bibliography

This article is issued from Wikipedia - version of the Friday, January 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.