Porteous formula
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space. Thom (1957) pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and Porteous (1971) found the polynomial in general. Kempf & Laksov (1974) proved a more general version, and Fulton (1992) generalized it further.
Statement
Given a morphism of vector bundles E, F of ranks m and n over a smooth variety, its degeneracy locus is the variety of points where it has rank at most k. If all components of the degeneracy locus have the expected codimension (m – k)(n – k) then Porteous's formula states that its fundamental class is the determinant of the matrix of size m – k whose (i, j) entry is the Chern class cn–k+j–i(F – E).
References
- Fulton, William (1992), "Flags, Schubert polynomials, degeneracy loci, and determinantal formulas", Duke Mathematical Journal 65 (3): 381–420, doi:10.1215/S0012-7094-92-06516-1, ISSN 0012-7094, MR 1154177
- Kempf, G.; Laksov, D. (1974), "The determinantal formula of Schubert calculus", Acta Mathematica 132: 153–162, doi:10.1007/BF02392111, ISSN 0001-5962, MR 0338006
- Porteous, Ian R. (1971) [1962], "Simple singularities of maps", Proceedings of Liverpool Singularities Symposium, I (1969/70), Lecture Notes in Mathematics 192, Berlin, New York: Springer-Verlag, pp. 286–307, doi:10.1007/BFb0066829, MR 0293646
- Thom, René (1957), Les ensembles singuliers d'une application différentiable et leurs propriétés homologiques, Séminaire de Topologie de Strasbourg