Texas Instruments TMS320

Texas Instruments TMS32020.
The ZMD U320C20 is a clone of the TMS320C20.

Texas Instruments TMS320 is a blanket name for a series of digital signal processors (DSPs) from Texas Instruments. It was introduced on April 8, 1983 through the TMS32010 processor, which was then the fastest DSP on the market.

The processor is available in many different variants, some with fixed-point arithmetic and some with floating point arithmetic. The floating point DSP TMS320C3x, which exploits delayed branch logic, has as many as three delay slots.

The flexibility of this line of processors has led to it being used not merely as a co-processor for digital signal processing but also as a main CPU. Newer implementations support standard IEEE JTAG control for boundary scan and/or in-circuit debugging.

The original TMS32010 and its subsequent variants is an example of a CPU with a modified Harvard architecture, which features separate address spaces for instruction and data memory but the ability to read data values from instruction memory. The TMS32010 featured a fast multiply-and-accumulate useful in both DSP applications as well as transformations used in computer graphics. The graphics controller card for the Apollo Computer DN570 Workstation, released in 1985, was based on the TMS32010 and could transform 20,000 2D vectors every second.

Variants

The TMS320 architecture has been around for a while so a number of product variants have developed. The product codes used by Texas Instruments after the first TMS32010 processor have involved a very popular series of processor named TMS320Cabcd where a is the main series, b the generation and cd is some custom number for a minor sub-variant.

For this reason people working with DSPs often abbreviate a processor as "C5x" when the actual name is something like TMS320C5510, since all products obviously have the name "TMS320" and all processors with "C5" in the name are code compatible and share the same basic features. Sometimes you will even hear people talking about "C55x" and similar subgroupings, since processors in the same series and same generation are even more similar.

Outside the main series

C2000 series

C5000 series

C6000 series

DaVinci series

OMAP variants

DA variants

DM variants

Software support

The TMS320 series can be programmed using C, C++, and/or assembly language. Most work on the TMS320 processors is done using Texas Instruments proprietary toolchain and their integrated development environment Code Composer Studio, which includes a mini operating system called DSP/BIOS. Additionally, a department at the Chemnitz University of Technology has developed preliminary support for the TMS320C6x series in the GNU Compiler Collection.[4]

In November 2007 TI released part of its toolchain as freeware for non-commercial users, offering the bare compiler, assembler, optimizer and linker under a proprietary license.[5][6] However, neither the IDE nor a debugger were included, so for debugging and JTAG access to the DSPs, users still need to purchase the complete toolchain.

In 2010 Texas Instruments contracted CodeSourcery (the assignment later transferred to Mentor Graphics as part of their acquisition) to provide deep integration and support for the C6x series in GCC, as part of their effort to port the Linux kernel to C6x. This culminated in C6x being a supported architecture in GCC release 4.7 on March 22, 2012.[7]

See also

References

  1. http://www.ti.com/lit/ug/spru131g/spru131g.pdf
  2. this "LinuxDevices article". Archived from the original on 2013-01-28. includes more information about this platform
  3. this http://members.cox.net/alexhardware/IC_database1.htm site includes more information
  4. Jan Parthey and Robert Baumgartl, Porting GCC to the TMS320-C6000 DSP Architecture, Appeared in the Proceedings of GSPx’04, Santa Clara, September 2004,
  5. "TI frees its DSP toolchain". Archived from the original on 2013-01-27.
  6. Free DSP Compiler Available
  7. GCC 4.7 Release Series - Changes, New Features, and Fixes

External links

This article is issued from Wikipedia - version of the Wednesday, January 27, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.