Symbolic Cholesky decomposition

In the mathematical subfield of numerical analysis the symbolic Cholesky decomposition is an algorithm used to determine the non-zero pattern for the L factors of a symmetric sparse matrix when applying the Cholesky decomposition or variants.

Algorithm

Let A=(a_{ij}) \in \mathbb{K}^{n \times n} be a sparse symmetric positive definite matrix with elements from a field \mathbb{K}, which we wish to factorize as A = LL^T\,.

In order to implement an efficient sparse factorization it has been found to be necessary to determine the non zero structure of the factors before doing any numerical work. To write the algorithm down we use the following notation:

The following algorithm gives an efficient symbolic factorization of A :


\begin{align}
& \pi(i):=0~\mbox{for all}~i\\
& \mbox{For}~i:=1~\mbox{to}~n\\
& \qquad \mathcal{L}_i := \mathcal{A}_i\\
& \qquad \mbox{For all}~j~\mbox{such that}~\pi(j) = i\\
& \qquad \qquad \mathcal{L}_i := (\mathcal{L}_i \cup \mathcal{L}_j)\setminus\{j\}\\
& \qquad \pi(i) := \min(\mathcal{L}_i\setminus\{i\})
\end{align}
This article is issued from Wikipedia - version of the Wednesday, November 25, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.