Sulfoquinovosyl diacylglycerol
Sulfoquinovosyl diacylglycerols, abbreviated SQDG, are a class of sulfur-containing but phosphorus-free lipids (sulfolipids) found in many photosynthetic organisms.
Discovery, structure and chemical properties
In 1959 A. A. Benson and coworkers discovered a new sulfur-containing lipid in plants and identified it as sulfoquinovosyl diacylglycerol (SQDG).[1] The sulfolipid structure was defined as 1,2-di-O-acyl-3-O-(6-deoxy-6-sulfo-α-D-glucopyranosyl)-sn-glycerol (SQDG). The distinctive feature of this substance is carbon bonded directly to sulfur as C-SO3. Sulfonic acids of this type are chemically stable and strong acids over a wide pH range.[2]
Biological occurrence and functions
SQDGs have been found in all photosynthetic plants, algae, cyanobacteria, purple sulfur and non-sulfur bacteria and is localised in the thylakoid membranes, being the most saturated glycolipid.[3]
SQDGs have been found to be closely associated with certain membrane proteins. In some cases the (electrostatic) interactions may be very strong, as suggested by the inability of saturated SQDG molecules associated with purified chloroplast CF0-CF1 ATPase to exchange with other acidic lipids.[4] It was shown also that SQDGs protect CF1 against cold inactivation in the presence of some ATP. CF1 bound to membranes was found to be much more resistant to heat and cold than solubilised protein. Mitochondrial coupling factor F1 is similarly protected by phospholipids and SQDGs although, in that case, both were equally effective.[5][6]
Information about SQDG and the Rieske protein interaction in the cyt b6f structures is also present. SQDGs seem to be involved in the turnover of cyt f in a similar manner like D1 and raises the question of whether a similar mechanism underlies the role of SQDG in the assembly of both subunits.[7]
Extensive SQDG accumulation was observed in apple shoot bark and wood (Okanenko, 1977) and in pine thylakoid during the autumn hardening,[8] while heat and drought action upon wheat,[9] at NaCl action in the halophyte Aster tripolium.[10]
SQDG also inhibits viral development by interfering with DNA-polymerase and reverse transcriptase activity.[11]
Synthesis in cyanobacteria
SQDGs are synthesized from UDP-sulfoquinovose and diacylglycerols.[12] In cyanobacteria, SQDGs are synthesized in two stages. First, UDP-glucose and sulfite are combined by UDP-sulfoquinovose synthase (SQD1) to produce UDP-sulfoquinovose. Second, the sulfoquinovose portion of UDP-sulfoquinovose is transferred to diacylglycerol by SQDG synthase to form SQDG.
Degradation during sulfur starvation
SQDGs degrade during sulfur starvation in some species such as Chlamydomonas reinhardtii. This response is for the redistribution of its sulfur to make new protein.[13]
See also
References
- ↑ Benson; Daniel, H; Wiser, R; et al. (1959). "A sulfolipid in plants". Proc. Natl. Acad. Sci. USA 45 (11): 1582–1587. doi:10.1073/pnas.45.11.1582. PMC 222763. PMID 16590547.
- ↑ Barber and Gounaris, 1986
- ↑ Janero, Barrnett, 1981
- ↑ Pick et al., 1985
- ↑ Bennun and Racker, 1969
- ↑ Livn and Racker, 1969
- ↑ De Vitry et al. 2004
- ↑ Oquist, 1982
- ↑ Taran et al., 2000
- ↑ Ramani, Zorn, Papenbrock, 2004
- ↑ Ohta et al. 1998, 2000
- ↑ Benning C (1998). "BIOSYNTHESIS AND FUNCTION OF THE SULFOLIPID SULFOQUINOVOSYL DIACYLGLYCEROL". Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 53–75. doi:10.1146/annurev.arplant.49.1.53. PMID 15012227.
- ↑ Sugimoto K et al. 2007