Standard Model

This article is about the Standard Model of particle physics. For other uses, see Standard model (disambiguation).
This article is a non-mathematical general overview of the Standard Model. For a mathematical description, see the article Standard Model (mathematical formulation).
For the Standard Model of Big Bang cosmology, Lambda-CDM model.
The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

The Standard Model of particle physics is a theory concerning the electromagnetic, weak, and strong nuclear interactions, as well as classifying all the subatomic particles known. It was developed throughout the latter half of the 20th century, as a collaborative effort of scientists around the world.[1] The current formulation was finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, discoveries of the top quark (1995), the tau neutrino (2000), and more recently the Higgs boson (2012), have given further credence to the Standard Model. Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything".

Although the Standard Model is believed to be theoretically self-consistent[2] and has demonstrated huge and continued successes in providing experimental predictions, it does leave some phenomena unexplained and it falls short of being a complete theory of fundamental interactions. It does not incorporate the full theory of gravitation[3] as described by general relativity, or account for the accelerating expansion of the universe (as possibly described by dark energy). The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations (and their non-zero masses).

The development of the Standard Model was driven by theoretical and experimental particle physicists alike. For theorists, the Standard Model is a paradigm of a quantum field theory, which exhibits a wide range of physics including spontaneous symmetry breaking, anomalies and non-perturbative behavior. It is used as a basis for building more exotic models that incorporate hypothetical particles, extra dimensions, and elaborate symmetries (such as supersymmetry) in an attempt to explain experimental results at variance with the Standard Model, such as the existence of dark matter and neutrino oscillations.

Historical background

The first step towards the Standard Model was Sheldon Glashow's discovery in 1961 of a way to combine the electromagnetic and weak interactions.[4] In 1967 Steven Weinberg[5] and Abdus Salam[6] incorporated the Higgs mechanism[7][8][9] into Glashow's electroweak theory, giving it its modern form.

The Higgs mechanism is believed to give rise to the masses of all the elementary particles in the Standard Model. This includes the masses of the W and Z bosons, and the masses of the fermions, i.e. the quarks and leptons.

After the neutral weak currents caused by Z boson exchange were discovered at CERN in 1973,[10][11][12][13] the electroweak theory became widely accepted and Glashow, Salam, and Weinberg shared the 1979 Nobel Prize in Physics for discovering it. The W and Z bosons were discovered experimentally in 1981, and their masses were found to be as the Standard Model predicted.

The theory of the strong interaction, to which many contributed, acquired its modern form around 1973–74, when experiments confirmed that the hadrons were composed of fractionally charged quarks.

Overview

At present, matter and energy are best understood in terms of the kinematics and interactions of elementary particles. To date, physics has reduced the laws governing the behavior and interaction of all known forms of matter and energy to a small set of fundamental laws and theories. A major goal of physics is to find the "common ground" that would unite all of these theories into one integrated theory of everything, of which all the other known laws would be special cases, and from which the behavior of all matter and energy could be derived (at least in principle).[14]

Particle content

The Standard Model includes members of several classes of elementary particles (fermions, gauge bosons, and the Higgs boson), which in turn can be distinguished by other characteristics, such as color charge.

Fermions

Summary of interactions between particles described by the Standard Model.

The Standard Model includes 12 elementary particles of spin-½ known as fermions. According to the spin-statistics theorem, fermions respect the Pauli exclusion principle. Each fermion has a corresponding antiparticle.

The fermions of the Standard Model are classified according to how they interact (or equivalently, by what charges they carry). There are six quarks (up, down, charm, strange, top, bottom), and six leptons (electron, electron neutrino, muon, muon neutrino, tau, tau neutrino). Pairs from each classification are grouped together to form a generation, with corresponding particles exhibiting similar physical behavior (see table).

The defining property of the quarks is that they carry color charge, and hence, interact via the strong interaction. A phenomenon called color confinement results in quarks being very strongly bound to one another, forming color-neutral composite particles (hadrons) containing either a quark and an antiquark (mesons) or three quarks (baryons). The familiar proton and the neutron are the two baryons having the smallest mass. Quarks also carry electric charge and weak isospin. Hence they interact with other fermions both electromagnetically and via the weak interaction.

The remaining six fermions do not carry colour charge and are called leptons. The three neutrinos do not carry electric charge either, so their motion is directly influenced only by the weak nuclear force, which makes them notoriously difficult to detect. However, by virtue of carrying an electric charge, the electron, muon, and tau all interact electromagnetically.

Each member of a generation has greater mass than the corresponding particles of lower generations. The first generation charged particles do not decay; hence all ordinary (baryonic) matter is made of such particles. Specifically, all atoms consist of electrons orbiting around atomic nuclei, ultimately constituted of up and down quarks. Second and third generation charged particles, on the other hand, decay with very short half lives, and are observed only in very high-energy environments. Neutrinos of all generations also do not decay, and pervade the universe, but rarely interact with baryonic matter.

Gauge bosons

The above interactions form the basis of the standard model. Feynman diagrams in the standard model are built from these vertices. Modifications involving Higgs boson interactions and neutrino oscillations are omitted. The charge of the W bosons is dictated by the fermions they interact with; the conjugate of each listed vertex (i.e. reversing the direction of arrows) is also allowed.

In the Standard Model, gauge bosons are defined as force carriers that mediate the strong, weak, and electromagnetic fundamental interactions.

Interactions in physics are the ways that particles influence other particles. At a macroscopic level, electromagnetism allows particles to interact with one another via electric and magnetic fields, and gravitation allows particles with mass to attract one another in accordance with Einstein's theory of general relativity. The Standard Model explains such forces as resulting from matter particles exchanging other particles, generally referred to as force mediating particles. When a force-mediating particle is exchanged, at a macroscopic level the effect is equivalent to a force influencing both of them, and the particle is therefore said to have mediated (i.e., been the agent of) that force. The Feynman diagram calculations, which are a graphical representation of the perturbation theory approximation, invoke "force mediating particles", and when applied to analyze high-energy scattering experiments are in reasonable agreement with the data. However, perturbation theory (and with it the concept of a "force-mediating particle") fails in other situations. These include low-energy quantum chromodynamics, bound states, and solitons.

The gauge bosons of the Standard Model all have spin (as do matter particles). The value of the spin is 1, making them bosons. As a result, they do not follow the Pauli exclusion principle that constrains fermions: thus bosons (e.g. photons) do not have a theoretical limit on their spatial density (number per volume). The different types of gauge bosons are described below.

The interactions between all the particles described by the Standard Model are summarized by the diagrams on the right of this section.

Higgs boson

Main article: Higgs boson

The Higgs particle is a massive scalar elementary particle theorized by Robert Brout, François Englert, Peter Higgs, Gerald Guralnik, C. R. Hagen, and Tom Kibble in 1964 (see 1964 PRL symmetry breaking papers) and is a key building block in the Standard Model.[7][8][9][15] It has no intrinsic spin, and for that reason is classified as a boson (like the gauge bosons, which have integer spin).

The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson explains why the photon has no mass, while the W and Z bosons are very heavy. Elementary particle masses, and the differences between electromagnetism (mediated by the photon) and the weak force (mediated by the W and Z bosons), are critical to many aspects of the structure of microscopic (and hence macroscopic) matter. In electroweak theory, the Higgs boson generates the masses of the leptons (electron, muon, and tau) and quarks. As the Higgs boson is massive, it must interact with itself.

Because the Higgs boson is a very massive particle and also decays almost immediately when created, only a very high-energy particle accelerator can observe and record it. Experiments to confirm and determine the nature of the Higgs boson using the Large Hadron Collider (LHC) at CERN began in early 2010, and were performed at Fermilab's Tevatron until its closure in late 2011. Mathematical consistency of the Standard Model requires that any mechanism capable of generating the masses of elementary particles become visible at energies above 1.4 TeV;[16] therefore, the LHC (designed to collide two 7 to 8 TeV proton beams) was built to answer the question of whether the Higgs boson actually exists.[17]

On 4 July 2012, the two main experiments at the LHC (ATLAS and CMS) both reported independently that they found a new particle with a mass of about 125 GeV/c2 (about 133 proton masses, on the order of 10−25 kg), which is "consistent with the Higgs boson." Although it has several properties similar to the predicted "simplest" Higgs,[18] they acknowledged that further work would be needed to conclude that it is indeed the Higgs boson, and exactly which version of the Standard Model Higgs is best supported if confirmed.[19][20][21][22][23]

On 14 March 2013 the Higgs Boson was tentatively confirmed to exist.[24]

Total particle count

Elementary Particles
Types Generations Antiparticle Colors Total
Quarks 2 3 Pair 3 36
Leptons Pair None 12
Gluons 1 1 Own 8 8
Photon Own None 1
Z Boson Own 1
W Boson Pair 2
Higgs Own 1
Total number of (known) elementary particles: 61

Counting particles by a rule that distinguishes between particles and their corresponding antiparticles, and among the many color states of quarks and gluons, gives a total of 61 elementary particles.[25] (If neutrinos are their own antiparticles,[26] then by the same counting conventions the total number of elementary particles would be 58.)

Theoretical aspects

Construction of the Standard Model Lagrangian

Technically, quantum field theory provides the mathematical framework for the Standard Model, in which a Lagrangian controls the dynamics and kinematics of the theory. Each kind of particle is described in terms of a dynamical field that pervades space-time. The construction of the Standard Model proceeds following the modern method of constructing most field theories: by first postulating a set of symmetries of the system, and then by writing down the most general renormalizable Lagrangian from its particle (field) content that observes these symmetries.

The global Poincaré symmetry is postulated for all relativistic quantum field theories. It consists of the familiar translational symmetry, rotational symmetry and the inertial reference frame invariance central to the theory of special relativity. The local SU(3)×SU(2)×U(1) gauge symmetry is an internal symmetry that essentially defines the Standard Model. Roughly, the three factors of the gauge symmetry give rise to the three fundamental interactions. The fields fall into different representations of the various symmetry groups of the Standard Model (see table). Upon writing the most general Lagrangian, one finds that the dynamics depend on 19 parameters, whose numerical values are established by experiment. The parameters are summarized in the table above (note: with the Higgs mass is at 125 GeV, the Higgs self-coupling strength λ ~ 1/8).

Quantum chromodynamics sector

The quantum chromodynamics (QCD) sector defines the interactions between quarks and gluons, with SU(3) symmetry, generated by Ta. Since leptons do not interact with gluons, they are not affected by this sector. The Dirac Lagrangian of the quarks coupled to the gluon fields is given by

\mathcal{L}_{QCD} = i\overline U (\partial_\mu-ig_sG_\mu^a T^a)\gamma^\mu U + i\overline D (\partial_\mu-i g_s G_\mu^a T^a)\gamma^\mu D.

G_\mu^a is the SU(3) gauge field containing the gluons, \gamma^\mu are the Dirac matrices, D and U are the Dirac spinors associated with up- and down-type quarks, and gs is the strong coupling constant.

Electroweak sector

The electroweak sector is a Yang–Mills gauge theory with the simple symmetry group U(1)×SU(2)L,


\mathcal{L}_\mathrm{EW} =
\sum_\psi\bar\psi\gamma^\mu
\left(i\partial_\mu-g^\prime{1\over2}Y_\mathrm{W}B_\mu-g{1\over2}\vec\tau_\mathrm{L}\vec W_\mu\right)\psi

where Bμ is the U(1) gauge field; YW is the weak hypercharge—the generator of the U(1) group; \vec{W}_\mu is the three-component SU(2) gauge field; \vec{\tau}_\mathrm{L} are the Pauli matrices—infinitesimal generators of the SU(2) group. The subscript L indicates that they only act on left fermions; g′ and g are coupling constants.

Higgs sector

Main article: Higgs mechanism

In the Standard Model, the Higgs field is a complex scalar of the group SU(2)L:


\varphi={1\over\sqrt{2}}
\left(
\begin{array}{c}
\varphi^+ \\ \varphi^0
\end{array}
\right)\;,

where the indices + and 0 indicate the electric charge (Q) of the components. The weak isospin (YW) of both components is 1.

Before symmetry breaking, the Higgs Lagrangian is:

\mathcal{L}_\mathrm{H} = \varphi^\dagger
\left({\partial^\mu}-
{i\over2} \left( g'Y_\mathrm{W}B^\mu + g\vec\tau\vec W^\mu \right)\right)
\left(\partial_\mu + {i\over2} \left( g'Y_\mathrm{W}B_\mu
+g\vec\tau\vec W_\mu \right)\right)\varphi \ - \ {\lambda^2\over4}\left(\varphi^\dagger\varphi-v^2\right)^2\;,

which can also be written as:

\mathcal{L}_\mathrm{H} = \left|
\left(\partial_\mu + {i\over2} \left( g'Y_\mathrm{W}B_\mu
+g\vec\tau\vec W_\mu \right)\right)\varphi\right|^2 \ - \ {\lambda^2\over4}\left(\varphi^\dagger\varphi-v^2\right)^2\;.

Fundamental forces

The Standard Model classified all four fundamental forces in nature. In the Standard Model, a force is described as an exchange of bosons between the objects affected, such as a photon for the electromagnetic force and a gluon for the strong interaction. Those particles are called force carriers.[27]

The four fundamental forces of nature[28]
Property/Interaction Gravitation Weak Electromagnetic Strong
(Electroweak) Fundamental Residual
Acts on: Mass - Energy Flavor Electric charge Color charge Atomic nuclei
Particles experiencing: All Quarks, leptons Electrically charged Quarks, Gluons Hadrons
Particles mediating: Graviton
W+ W Z0 γ Gluons Mesons
Strength in the scale of quarks: 10−41 10−4 1 60 Not applicable
to quarks
Strength in the scale of
protons/neutrons:
10−36 10−7 1 Not applicable
to hadrons
20

Tests and predictions

The Standard Model (SM) predicted the existence of the W and Z bosons, gluon, and the top and charm quarks before these particles were observed. Their predicted properties were experimentally confirmed with good precision. To give an idea of the success of the SM, the following table compares the measured masses of the W and Z bosons with the masses predicted by the SM:

Quantity Measured (GeV) SM prediction (GeV)
Mass of W boson 80.387 ± 0.019 80.390 ± 0.018
Mass of Z boson 91.1876 ± 0.0021 91.1874 ± 0.0021

The SM also makes several predictions about the decay of Z bosons, which have been experimentally confirmed by the Large Electron-Positron Collider at CERN.

In May 2012 BaBar Collaboration reported that their recently analyzed data may suggest possible flaws in the Standard Model of particle physics.[29][30] These data show that a particular type of particle decay called "B to D-star-tau-nu" happens more often than the Standard Model says it should. In this type of decay, a particle called the B-bar meson decays into a D meson, an antineutrino and a tau-lepton. While the level of certainty of the excess (3.4 sigma) is not enough to claim a break from the Standard Model, the results are a potential sign of something amiss and are likely to impact existing theories, including those attempting to deduce the properties of Higgs bosons.[31]

On December 13, 2012, physicists reported the constancy, over space and time, of a basic physical constant of nature that supports the standard model of physics. The scientists, studying methanol molecules in a distant galaxy, found the change (∆μ/μ) in the proton-to-electron mass ratio μ to be equal to "(0.0 ± 1.0) × 10−7 at redshift z = 0.89" and consistent with "a null result".[32][33]

Challenges

Unsolved problem in physics:
  • What gives rise to the Standard Model of particle physics?
  • Why do particle masses and coupling constants have the values that we measure?
  • Why are there three generations of particles?
  • Why is there more matter than antimatter in the universe?
  • Where does Dark Matter fit into the model? Is it even a new particle?

(more unsolved problems in physics)

Self-consistency of the Standard Model (currently formulated as a non-abelian gauge theory quantized through path-integrals) has not been mathematically proven. While regularized versions useful for approximate computations (for example lattice gauge theory) exist, it is not known whether they converge (in the sense of S-matrix elements) in the limit that the regulator is removed. A key question related to the consistency is the Yang–Mills existence and mass gap problem.

Experiments indicate that neutrinos have mass, which the classic Standard Model did not allow.[34] To accommodate this finding, the classic Standard Model can be modified to include neutrino mass.

If one insists on using only Standard Model particles, this can be achieved by adding a non-renormalizable interaction of leptons with the Higgs boson.[35] On a fundamental level, such an interaction emerges in the seesaw mechanism where heavy right-handed neutrinos are added to the theory. This is natural in the left-right symmetric extension of the Standard Model[36][37] and in certain grand unified theories.[38] As long as new physics appears below or around 1014 GeV, the neutrino masses can be of the right order of magnitude.

Theoretical and experimental research has attempted to extend the Standard Model into a Unified field theory or a Theory of everything, a complete theory explaining all physical phenomena including constants. Inadequacies of the Standard Model that motivate such research include:

Currently, no proposed Theory of Everything has been widely accepted or verified.

See also

Notes and references

  1. Technically, there are nine such color–anticolor combinations. However, there is one color-symmetric combination that can be constructed out of a linear superposition of the nine combinations, reducing the count to eight.

References

  1. R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics (Kindle ed.). Penguin Group. p. 2. ISBN 0-13-236678-9.
  2. In fact, there are mathematical issues regarding quantum field theories still under debate (see e.g. Landau pole), but the predictions extracted from the Standard Model by current methods applicable to current experiments are all self-consistent. For a further discussion see e.g. Chapter 25 of R. Mann (2010). An Introduction to Particle Physics and the Standard Model. CRC Press. ISBN 978-1-4200-8298-2.
  3. Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct. 7, 2013, "...Standard Model of Particle Physics: The modern theory of elementary particles and their interactions ... It does not, strictly speaking, include gravity, although it's often convenient to include gravitons among the known particles of nature..."
  4. S.L. Glashow (1961). "Partial-symmetries of weak interactions". Nuclear Physics 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
  5. S. Weinberg (1967). "A Model of Leptons". Physical Review Letters 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264.
  6. A. Salam (1968). N. Svartholm, ed. Elementary Particle Physics: Relativistic Groups and Analyticity. Eighth Nobel Symposium. Stockholm: Almquvist and Wiksell. p. 367.
  7. 1 2 F. Englert, R. Brout (1964). "Broken Symmetry and the Mass of Gauge Vector Mesons". Physical Review Letters 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.
  8. 1 2 P.W. Higgs (1964). "Broken Symmetries and the Masses of Gauge Bosons". Physical Review Letters 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.
  9. 1 2 G.S. Guralnik, C.R. Hagen, T.W.B. Kibble (1964). "Global Conservation Laws and Massless Particles". Physical Review Letters 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.
  10. F.J. Hasert; et al. (1973). "Search for elastic muon-neutrino electron scattering". Physics Letters B 46 (1): 121. Bibcode:1973PhLB...46..121H. doi:10.1016/0370-2693(73)90494-2.
  11. F.J. Hasert; et al. (1973). "Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment". Physics Letters B 46 (1): 138. Bibcode:1973PhLB...46..138H. doi:10.1016/0370-2693(73)90499-1.
  12. F.J. Hasert; et al. (1974). "Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment". Nuclear Physics B 73 (1): 1. Bibcode:1974NuPhB..73....1H. doi:10.1016/0550-3213(74)90038-8.
  13. D. Haidt (4 October 2004). "The discovery of the weak neutral currents". CERN Courier. Retrieved 8 May 2008.
  14. "Details can be worked out if the situation is simple enough for us to make an approximation, which is almost never, but often we can understand more or less what is happening." from The Feynman Lectures on Physics, Vol 1. pp. 2–7
  15. G.S. Guralnik (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles". International Journal of Modern Physics A 24 (14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431.
  16. B.W. Lee, C. Quigg, H.B. Thacker (1977). "Weak interactions at very high energies: The role of the Higgs-boson mass". Physical Review D 16 (5): 1519–1531. Bibcode:1977PhRvD..16.1519L. doi:10.1103/PhysRevD.16.1519.
  17. "Huge $10 billion collider resumes hunt for 'God particle'". CNN. 11 November 2009. Retrieved 2010-05-04.
  18. M. Strassler (10 July 2012). "Higgs Discovery: Is it a Higgs?". Retrieved 2013-08-06.
  19. "CERN experiments observe particle consistent with long-sought Higgs boson". CERN. 4 July 2012. Retrieved 2012-07-04.
  20. "Observation of a New Particle with a Mass of 125 GeV". CERN. 4 July 2012. Retrieved 2012-07-05.
  21. "ATLAS Experiment". ATLAS. 1 January 2006. Retrieved 2012-07-05.
  22. "Confirmed: CERN discovers new particle likely to be the Higgs boson". YouTube. Russia Today. 4 July 2012. Retrieved 2013-08-06.
  23. D. Overbye (4 July 2012). "A New Particle Could Be Physics' Holy Grail". New York Times. Retrieved 2012-07-04.
  24. "New results indicate that new particle is a Higgs boson". CERN. 14 March 2013. Retrieved 2013-08-06.
  25. S. Braibant, G. Giacomelli, M. Spurio (2009). Particles and Fundamental Interactions: An Introduction to Particle Physics. Springer. pp. 313–314. ISBN 978-94-007-2463-1.
  26. Kayser, Boris (2009). "Are neutrinos their own antiparticles?" (PDF). Journal of Physics: Conference Series (IOP Publishing) 173 (1): 012013.
  27. http://home.web.cern.ch/about/physics/standard-model Official CERN website
  28. http://www.pha.jhu.edu/~dfehling/particle.gif
  29. "BABAR Data in Tension with the Standard Model". SLAC. 31 May 2012. Retrieved 2013-08-06.
  30. BaBar Collaboration (2012). "Evidence for an excess of B → D(*) τ ντ decays". Physical Review Letters 109 (10): 101802. arXiv:1205.5442. Bibcode:2012PhRvL.109j1802L. doi:10.1103/PhysRevLett.109.101802.
  31. "BaBar data hint at cracks in the Standard Model". e! Science News. 18 June 2012. Retrieved 2013-08-06.
  32. J. Bagdonaite; et al. (2012). "A Stringent Limit on a Drifting Proton-to-Electron Mass Ratio from Alcohol in the Early Universe". Science 339 (6115): 46. Bibcode:2013Sci...339...46B. doi:10.1126/science.1224898.
  33. C. Moskowitz (13 December 2012). "Phew! Universe's Constant Has Stayed Constant". Space.com. Retrieved 2012-12-14.
  34. "Particle chameleon caught in the act of changing". CERN. 31 May 2010. Retrieved 2012-07-05.
  35. S. Weinberg (1979). "Baryon and Lepton Nonconserving Processes". Physical Review Letters 43 (21): 1566. Bibcode:1979PhRvL..43.1566W. doi:10.1103/PhysRevLett.43.1566.
  36. P. Minkowski (1977). "μ → e γ at a Rate of One Out of 109 Muon Decays?". Physics Letters B 67 (4): 421. Bibcode:1977PhLB...67..421M. doi:10.1016/0370-2693(77)90435-X.
  37. R. N. Mohapatra, G. Senjanovic (1980). "Neutrino Mass and Spontaneous Parity Nonconservation". Physical Review Letters 44 (14): 912–915. Bibcode:1980PhRvL..44..912M. doi:10.1103/PhysRevLett.44.912.
  38. M. Gell-Mann, P. Ramond and R. Slansky (1979). F. van Nieuwenhuizen and D. Z. Freedman, ed. Supergravity. North Holland. pp. 315–321. ISBN 0-444-85438-X.
  39. A. Blumhofer, M. Hutter (1997). "Family Structure from Periodic Solutions of an Improved Gap Equation". Nuclear Physics B484: 80–96. doi:10.1016/S0550-3213(96)00644-X.
  40. Salvio, Strumia (2014-03-17). "Agravity". JHEP 1406 (2014) 080. arXiv:1403.4226. Bibcode:2014JHEP...06..080S. doi:10.1007/JHEP06(2014)080.

Further reading

Introductory textbooks
Advanced textbooks
Journal articles

External links

This article is issued from Wikipedia - version of the Friday, February 12, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.