Spherical 3-manifold

In mathematics, a spherical 3-manifold M is a 3-manifold of the form

M=S^3/\Gamma

where \Gamma is a finite subgroup of SO(4) acting freely by rotations on the 3-sphere S^3. All such manifolds are prime, orientable, and closed. Spherical 3-manifolds are sometimes called elliptic 3-manifolds or Clifford-Klein manifolds.

Properties

A spherical 3-manifold has a finite fundamental group isomorphic to Γ itself. The elliptization conjecture, proved by Grigori Perelman, states that conversely all 3-manifolds with finite fundamental group are spherical manifolds.

The fundamental group is either cyclic, or is a central extension of a dihedral, tetrahedral, octahedral, or icosahedral group by a cyclic group of even order. This divides the set of such manifolds into 5 classes, described in the following sections.

The spherical manifolds are exactly the manifolds with spherical geometry, one of the 8 geometries of Thurston's geometrization conjecture.

Cyclic case (lens spaces)

The manifolds S^3/\Gamma with Γ cyclic are precisely the 3-dimensional lens spaces. A lens space is not determined by its fundamental group (there are non-homeomorphic lens spaces with isomorphic fundamental groups); but any other spherical manifold is.

Three-dimensional lens spaces arise as quotients of S^3 \subset \mathbb{C}^2 by the action of the group that is generated by elements of the form

\begin{pmatrix}\omega &0\\0&\omega^q\end{pmatrix}.

where \omega=e^{2\pi i/p}. Such a lens space L(p;q) has fundamental group \mathbb{Z}/p\mathbb{Z} for all q, so spaces with different p are not homotopy equivalent. Moreover, classifications up to homeomorphism and homotopy equivalence are known, as follows. The three-dimensional spaces L(p;q_1) and L(p;q_2) are:

  1. homotopy equivalent if and only if q_1 q_2 \equiv \pm n^2 \pmod{p} for some n \in \mathbb{N};
  2. homeomorphic if and only if q_1 \equiv \pm q_2^{\pm1} \pmod{p}.

In particular, the lens spaces L(7,1) and L(7,2) give examples of two 3-manifolds that are homotopy equivalent but not homeomorphic.

The lens space L(1,0) is the 3-sphere, and the lens space L(2,1) is 3 dimensional real projective space.

Lens spaces can be represented as Seifert fiber spaces in many ways, usually as fiber spaces over the 2-sphere with at most two exceptional fibers, though the lens space with fundamental group of order 4 also has a representation as a Seifert fiber space over the projective plane with no exceptional fibers.

Dihedral case (prism manifolds)

A prism manifold is a closed 3-dimensional manifold M whose fundamental group is a central extension of a dihedral group.

The fundamental group π1(M) of M is a product of a cyclic group of order m with a group having presentation

\langle x,y\mid xyx^{-1}=y^{-1}, x^{2^k}=y^n\rangle

for integers k, m, n with k 1, m 1, n 2 and m coprime to 2n.

Alternatively, the fundamental group has presentation

\langle x,y \mid xyx^{-1}=y^{-1}, x^{2m}=y^n\rangle

for coprime integers m, n with m 1, n 2. (The n here equals the previous n, and the m here is 2k-1 times the previous m.)

We continue with the latter presentation. This group is a metacyclic group of order 4mn with abelianization of order 4m (so m and n are both determined by this group). The element y generates a cyclic normal subgroup of order 2n, and the element x has order 4m. The center is cyclic of order 2m and is generated by x2, and the quotient by the center is the dihedral group of order 2n.

When m = 1 this group is a binary dihedral or dicyclic group. The simplest example is m = 1, n = 2, when π1(M) is the quaternion group of order 8.

Prism manifolds are uniquely determined by their fundamental groups: if a closed 3-manifold has the same fundamental group as a prism manifold M, it is homeomorphic to M.

Prism manifolds can be represented as Seifert fiber spaces in two ways.

Tetrahedral case

The fundamental group is a product of a cyclic group of order m with a group having presentation

\langle x,y,z \mid (xy)^2=x^2=y^2, zxz^{-1}=y,zyz^{-1}=xy, z^{3^k}=1\rangle

for integers k, m with k 1, m 1 and m coprime to 6.

Alternatively, the fundamental group has presentation

\langle x,y,z \mid (xy)^2=x^2=y^2, zxz^{-1}=y,zyz^{-1}=xy, z^{3m}=1\rangle

for an odd integer m 1. (The m here is 3k-1 times the previous m.)

We continue with the latter presentation. This group has order 24m. The elements x and y generate a normal subgroup isomorphic to the quaternion group of order 8. The center is cyclic of order 2m. It is generated by the elements z3 and x2 = y2, and the quotient by the center is the tetrahedral group, equivalently, the alternating group A4.

When m = 1 this group is the binary tetrahedral group.

These manifolds are uniquely determined by their fundamental groups. They can all be represented in an essentially unique way as Seifert fiber spaces: the quotient manifold is a sphere and there are 3 exceptional fibers of orders 2, 3, and 3.

Octahedral case

The fundamental group is a product of a cyclic group of order m coprime to 6 with the binary octahedral group (of order 48) which has the presentation

\langle x,y \mid (xy)^2=x^3=y^4\rangle.

These manifolds are uniquely determined by their fundamental groups. They can all be represented in an essentially unique way as Seifert fiber spaces: the quotient manifold is a sphere and there are 3 exceptional fibers of orders 2, 3, and 4.

Icosahedral case

The fundamental group is a product of a cyclic group of order m coprime to 30 with the binary icosahedral group (order 120) which has the presentation

\langle x,y \mid (xy)^2=x^3=y^5\rangle.

When m is 1, the manifold is the Poincaré homology sphere.

These manifolds are uniquely determined by their fundamental groups. They can all be represented in an essentially unique way as Seifert fiber spaces: the quotient manifold is a sphere and there are 3 exceptional fibers of orders 2, 3, and 5.

References

This article is issued from Wikipedia - version of the Sunday, June 07, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.